Do you want to publish a course? Click here

Quintessence dynamics with two scalar fields and mixed kinetic terms

300   0   0.0 ( 0 )
 Added by Joel Weller
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamical properties of a model of dark energy in which two scalar fields are coupled by a non-canonical kinetic term are studied. We show that overall the addition of the coupling has only minor effects on the dynamics of the two-field system for both potentials studied, even preserving many of the features of the assisted quintessence scenario. The coupling of the kinetic terms enlarges the regions of stability of the critical points. When the potential is of an additive form, we find the kinetic coupling has an interesting effect on the dynamics of the fields as they approach the inflationary attractor, with the result that the combined equation of state of the scalar fields can approach -1 during the transition from a matter dominated universe to the recent period of acceleration.



rate research

Read More

We present an Effective Field Theory based reconstruction of quintessence models of dark energy directly from cosmological data. We show that current cosmological data possess enough constraining power to test several quintessence model properties for redshifts $zin [0,1.5]$ with no assumptions about the behavior of the scalar field potential. We use measurements of the cosmic microwave background, supernovae distances, and the clustering and lensing of galaxies to constrain the evolution of the dark energy equation of state, Swampland Conjectures, the shape of the scalar field reconstructed potential, and the structure of its phase space. The standard cosmological model still remains favored by data and, within quintessence models, deviations from its expansion history are bounded to be below the 10% level at 95% confidence at any redshift below $z=1.5$.
Using the dynamical system approach, we describe the general dynamics of cosmological scalar fields in terms of critical points and heteroclinic lines. It is found that critical points describe the initial and final states of the scalar field dynamics, but that heteroclinic lines which give a more complete description of the evolution in between the critical points. In particular, the heteroclinic line that departs from the (saddle) critical point of perfect fluid-domination is the representative path in phase space of quintessence fields that may be viable dark energy candidates. We also discuss the attractor properties of the heteroclinic lines, and their importance for the description of thawing and freezing fields.
239 - Sourav Sur 2009
We examine the plausibility of crossing the cosmological constant ($L$) barrier in a two-field quintessence model of dark energy, involving a kinetic interaction between the individual fields. Such a kinetic interaction may have its origin in the four dimensional effective two-field version of the Dirac-Born-Infeld action, that describes the motion of a D3-brane in a higher dimensional space-time. We show that this interaction term could indeed enable the dark energy equation of state parameter $wx$ to cross the $L$-barrier (i.e., $wx = -1$), keeping the Hamiltonian well behaved (bounded from below), as well as satisfying the condition of stability of cosmological density perturbations, i.e., the positivity of the squares of the sound speeds corresponding to the adiabatic and entropy modes. The model is found to fit well with the latest Supernova Union data and the WMAP results. The best fit curve for $wx$ crosses -1 at red-shift $z$ in the range $sim 0.215 - 0.245$, whereas the transition from deceleration to acceleration takes place in the range of $z sim 0.56 - 0.6$. The scalar potential reconstructed using the best fit model parameters is found to vary smoothly with time, while the dark energy density nearly follows the matter density at early epochs, becomes dominant in recent past, and slowly increases thereafter without giving rise to singularities in finite future.
We constrain the parameters of dynamical dark energy in the form of a classical scalar field with barotropic equation of state jointly with other cosmological parameters using various combined datasets including the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7 and WiggleZ, the light curves of SN Ia from 3 different compilations: SDSS (SALT2 and MLCS2k2 light curve fittings), SNLS3 and Union2.1. The considered class of models involves both quintessential and phantom subclasses. The analysis has shown that the phantom models are generally preferred by the observational data. We discuss the effect of allowing for non-zero masses of active neutrinos, non-zero curvature or non-zero contribution from the tensor mode of perturbations on the precision of dark energy parameters estimation. We also perform a forecast for the Planck mock data.
We explore the possibility that a scalar field with appropriate Lagrangian can mimic a perfect fluid with an affine barotropic equation of state. The latter can be thought of as a generic cosmological dark component evolving as an effective cosmological constant plus a generalized dark matter. As such, it can be used as a simple, phenomenological model for either dark energy or unified dark matter. Furthermore, it can approximate (up to first order in the energy density) any barotropic dark fluid with arbitrary equation of state. We find that two kinds of Lagrangian for the scalar field can reproduce the desired behaviour: a quintessence-like with a hyperbolic potential, or a purely kinetic k-essence one. We discuss the behaviour of these two classes of models from the point of view of the cosmological background, and we give some hints on their possible clustering properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا