Do you want to publish a course? Click here

Stochastic analysis of Bernoulli processes

277   0   0.0 ( 0 )
 Added by Nicolas Privault
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

These notes survey some aspects of discrete-time chaotic calculus and its applications, based on the chaos representation property for i.i.d. sequences of random variables. The topics covered include the Clark formula and predictable representation, anticipating calculus, covariance identities and functional inequalities (such as deviation and logarithmic Sobolev inequalities), and an application to option hedging in discrete time.



rate research

Read More

We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a certain Markov process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is always singular with respect to the Lebesgue measure which in many applications is ``close to reality. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Levy process (a subordinator) hence making the theory of Levy processes applicable. Another important ingredient in our approach is the Palm calculus coming from the point process point of view.
For n>=1 let X_n be a vector of n independent Bernoulli random variables. We assume that X_n consists of M blocks such that the Bernoulli random variables in block i have success probability p_i. Here M does not depend on n and the size of each block is essentially linear in n. Let X_n be a random vector having the conditional distribution of X_n, conditioned on the total number of successes being at least k_n, where k_n is also essentially linear in n. Define Y_n similarly, but with success probabilities q_i>=p_i. We prove that the law of X_n converges weakly to a distribution that we can describe precisely. We then prove that sup Pr(X_n <= Y_n) converges to a constant, where the supremum is taken over all possible couplings of X_n and Y_n. This constant is expressed explicitly in terms of the parameters of the system.
Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It^{o} formula for Dirichlet processes is obtained.
We study a dependent site percolation model on the $n$-dimensional Euclidean lattice where, instead of single sites, entire hyperplanes are removed independently at random. We extend the results about Bernoulli line percolation showing that the model undergoes a non-trivial phase transition and proving the existence of a transition from exponential to power-law decay within some regions of the subcritical phase.
Stochastic point processes with refractoriness appear frequently in the quantitative analysis of physical and biological systems, such as the generation of action potentials by nerve cells, the release and reuptake of vesicles at a synapse, and the counting of particles by detector devices. Here we present an extension of renewal theory to describe ensembles of point processes with time varying input. This is made possible by a representation in terms of occupation numbers of two states: Active and refractory. The dynamics of these occupation numbers follows a distributed delay differential equation. In particular, our theory enables us to uncover the effect of refractoriness on the time-dependent rate of an ensemble of encoding point processes in response to modulation of the input. We present exact solutions that demonstrate generic features, such as stochastic transients and oscillations in the step response as well as resonances, phase jumps and frequency doubling in the transfer of periodic signals. We show that a large class of renewal processes can indeed be regarded as special cases of the model we analyze. Hence our approach represents a widely applicable framework to define and analyze non-stationary renewal processes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا