Do you want to publish a course? Click here

Analysis of stochastic fluid queues driven by local time processes

183   0   0.0 ( 0 )
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a certain Markov process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is always singular with respect to the Lebesgue measure which in many applications is ``close to reality. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Levy process (a subordinator) hence making the theory of Levy processes applicable. Another important ingredient in our approach is the Palm calculus coming from the point process point of view.



rate research

Read More

249 - Nicolas Privault 2018
These notes survey some aspects of discrete-time chaotic calculus and its applications, based on the chaos representation property for i.i.d. sequences of random variables. The topics covered include the Clark formula and predictable representation, anticipating calculus, covariance identities and functional inequalities (such as deviation and logarithmic Sobolev inequalities), and an application to option hedging in discrete time.
We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and independent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Levy processes.
Stochastic fluid-fluid models (SFFMs) offer powerful modeling ability for a wide range of real-life systems of significance. The existing theoretical framework for this class of models is in terms of operator-analytic methods. For the first time, we establish matrix-analytic methods for the efficient analysis of SFFMs. We illustrate the theory with numerical examples.
130 - Jiheng Zhang 2009
We study many-server queues with abandonment in which customers have general service and patience time distributions. The dynamics of the system are modeled using measure- valued processes, to keep track of the residual service and patience times of each customer. Deterministic fluid models are established to provide first-order approximation for this model. The fluid model solution, which is proved to uniquely exists, serves as the fluid limit of the many-server queue, as the number of servers becomes large. Based on the fluid model solution, first-order approximations for various performance quantities are proposed.
We propose to study a new type of Backward stochastic differential equations driven by a family of It^os processes. We prove existence and uniqueness of the solution, and investigate stability and comparison theorem.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا