Do you want to publish a course? Click here

Resonant circular photogalvanic effect in GaN/AlGaN heterojunctions

169   0   0.0 ( 0 )
 Added by Sergey Ganichev
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The resonant circular photogalvanic effect is observed in wurtzite (0001)-oriented GaN low-dimensional structures excited by infrared radiation. The current is induced by angular momentum transfer of photons to the photoexcited electrons at resonant inter-subband optical transitions in a GaN/AlGaN heterojunction. The signal reverses upon the reversal of the radiation helicity or, at fixed helicity, when the propagation direction of the photons is reversed. Making use of the tunability of the free-electron laser FELIX we demonstrate that the current direction changes by sweeping the photon energy through the intersubband resonance condition, in agreement with theoretical considerations.



rate research

Read More

The magneto-gyrotropic photogalvanic and spin-galvanic effects are observed in (0001)-oriented GaN/AlGaN heterojunctions excited by terahertz radiation. We show that free-carrier absorption of linearly or circularly polarized terahertz radiation in low-dimensional structures causes an electric photocurrent in the presence of an in-plane magnetic field. Microscopic mechanisms of these photocurrents based on spin-related phenomena are discussed. Properties of the magneto-gyrotropic and spin-galvanic effects specific for hexagonal heterostructures are analyzed.
We have studied the circular photogalvanic effect (CPGE) in Cu/Bi bilayers. When a circularly polarized light in the visible range is irradiated to the bilayer from an oblique incidence, we find a photocurrent that depends on the helicity of light. Such photocurrent appears in a direction perpendicular to the light plane of incidence but is absent in the parallel configuration. The helicity dependent photocurrent is significantly reduced for a Bi single layer film and the effect is nearly absent for a Cu single layer film. Conventional interpretation of the CPGE suggests the existence of spin-momentum locked band(s) of a Rashba type in the Cu/Bi bilayer. In contrast to previous reports on the CPGE studied in other systems, however, the light energy used here to excite the carriers is much larger than the band gap of Bi. Moreover, the CPGE of the Cu/Bi bilayer is larger when the energy of the light is larger: the helicity dependent photocurrent excited with a blue light is nearly two times larger than that of a red light. We therefore consider the CPGE of the Cu/Bi bilayer may have a different origin compared to conventional systems.
We describe the observation of the circular and linear photogalvanic effects in HgTe/CdHgTe quantum wells. The interband absorption of mid-infrared radiation as well as the intrasubband absorption of terahertz (THz) radiation in the QWs structures is shown to cause a dc electric current due to these effects. The photocurrent magnitude and direction varies with the radiation polarization state and crystallographic orientation of the substrate in a simple way that can be understood from a phenomenological theory. The observed dependences of the photocurrent on the radiation wavelength and temperature are discussed.
234 - L. E. Golub , E. L. Ivchenko , 2020
We develop a theory of circular photogalvanic effect (CPGE) for classically high photon energies which exceed the electron scattering rate but are small compared to the average electron kinetic energy. In this frequency range one can calculate the CPGE by using two different approaches. In the fully quantum-mechanical approach we find the photocurrent density by applying Fermis golden rule for indirect intraband optical transitions with virtual intermediate states both in the conduction and valence bands. In the framework of the semiclassical approach, we apply a generalized Boltzmann equation with accounts for the Berry-curvature induced anomalous velocity, side jumps and skew scattering. The calculation is carried out for a wurtzite symmetry crystal. Both methods yield the same results for the CPGE current demonstrating consistency between the two approaches and applicability of the semiclassical theory for the description of nonlinear high-frequency transport.
By the insertion of thin InGaN layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا