Do you want to publish a course? Click here

Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime

254   0   0.0 ( 0 )
 Added by John Dudley
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Numerical simulations are used to study how fiber supercontinuum generation seeded by picosecond pulses can be actively controlled through the use of input pulse modulation. By carrying out multiple simulations in the presence of noise, we show how tailored supercontinuum Spectra with increased bandwidth and improved stability can be generated using an input envelope modulation of appropriate frequency and depth. The results are discussed in terms of the non-linear propagation dynamics and pump depletion.



rate research

Read More

We demonstrate broadband supercontinuum generation in an all-normal dispersion polarization-maintaining photonic crystal fiber and we report the observation of a cross-phase modulation instability sideband that is generated outside of the supercontinuum bandwidth. We demonstrate this sideband is polarized on the slow axis and can be suppressed by pumping on the fibers fast axis. We theoretically confirm and model this nonlinear process using phase-matching conditions and numerical simulations, obtaining good agreement with the measured data.
We present a numerical study of the evolution dynamics of ``optical rogue waves, statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli et al. Nature Vol. 450, 1054-1058 (2007)]. Our specific aim is to use nonlinear Schrodinger equation simulations to identify ways in which the rogue wave dynamics can be actively controlled, and we demonstrate that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.
Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50 % for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schroedinger equation, finding good quantitative agreement over a range of input pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input pulse shot noise and the spontaneous Raman scattering down the fiber.
We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We report the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.
327 - J. M. Dudley , G. Genty , F. Dias 2009
Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers. Numerical and analytical results are compared with experimental measurements of spectral broadening in photonic crystal fiber using nanosecond pulses
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا