No Arabic abstract
The radio galaxy Fornax A (NGC 1316) is a prominent merger remnant in the outskirts of the Fornax cluster. Its giant radio lobes suggest the presence of a powerful AGN and thus a central supermassive black hole (SMBH). We present high-resolution adaptive optics assisted integral-field data of Fornax A, taken with SINFONI at the Very Large Telescope in the K band. We use axisymmetric orbit models to determine the mass of the SMBH in the centre of Fornax A. The three-dimensional nature of our data provides the possibility to directly test the consistency of the data with axisymmetry by modelling each of the four quadrants separately. According to our dynamical models, consistent SMBH masses and dynamical Ks band mass-to-light ratios are obtained for all quadrants, with <M_BH>=1.3x10^8 M_odot (rms(M_BH)=0.4x10^8 Msun) and <M/L>=0.68 (rms(M/L)=0.03), confirming the assumption of axisymmetry. For the folded and averaged data we find M_BH=(1.5+0.75-0.8)x10^8 Msun and M/L=(0.65+0.075-0.05) (3-sigma errors). Thus the black-hole mass of Fornax A is consistent within the error with the Tremaine (2002) M-sigma relation, but is a factor ~4 smaller than expected from its bulge mass and the Marconi&Hunt (2003) relation.
Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically shaped by the energy injection from accreting supermassive black holes (SMBHs). However, it is unclear how exactly the physics of this feedback process affects galaxy formation and evolution. In particular, a major challenge is unraveling how the energy released near the SMBHs is distributed over nine orders of magnitude in distance throughout galaxies and their immediate environments. The best place to study the impact of SMBH feedback is in the hot atmospheres of massive galaxies, groups, and galaxy clusters, which host the most massive black holes in the Universe, and where we can directly image the impact of black holes on their surroundings. We identify critical questions and potential measurements that will likely transform our understanding of the physics of SMBH feedback and how it shapes galaxies, through detailed measurements of (i) the thermodynamic and velocity fluctuations in the intracluster medium (ICM) as well as (ii) the composition of the bubbles inflated by SMBHs in the centers of galaxy clusters, and their influence on the cluster gas and galaxy growth, using the next generation of high spectral and spatial resolution X-ray and microwave telescopes.
We study a model in which supermassive black holes (SMBHs) can grow by the combined action of gas accretion on heavy seeds and mergers of both heavy (m_s^h=10^5 Msol) and light (m_s^l = 10^2 Msol) seeds. The former result from the direct collapse of gas in T_s^h >1.5x10^4K, H_2-free halos; the latter are the endproduct of a standard H_2-based star formation process. The H_2-free condition is attained by exposing halos to a strong (J_21 > 10^3) Lyman-Werner UV background produced by both accreting BHs and stars, thus establishing a self-regulated growth regime. We find that this condition is met already at z close to 18 in the highly biased regions in which quasars are born. The key parameter allowing the formation of SMBHs by z=6-7 is the fraction of halos that can form heavy seeds: the minimum requirement is that f_heavy>0.001; SMBH as large as 2x10^10 Msol can be obtained when f_heavy approaches unity. Independently of f_heavy, the model produces a high-z stellar bulge-black hole mass relation which is steeper than the local one, implying that SMBHs formed before their bulge was in place. The formation of heavy seeds, allowed by the Lyman-Werner radiative feedback in the quasar-forming environment, is crucial to achieve a fast growth of the SMBH by merger events in the early phases of its evolution, i.e. z>7. The UV photon production is largely dominated by stars in galaxies, i.e. black hole accretion radiation is sub-dominant. Interestingly, we find that the final mass of light BHs and of the SMBH in the quasar is roughly equal by z=6; by the same time only 19% of the initial baryon content has been converted into stars. The SMBH growth is dominated at all epochs z > 7.2 by mergers (exceeding accretion by a factor 2-50); at later times accretion becomes by far the most important growth channel. We finally discuss possible shortcomings of the model.
Isophotal analysis of M87, using data from the Advanced Camera for Surveys, reveals a projected displacement of 6.8 +/- 0.8 pc (~ 0.1 arcsec) between the nuclear point source (presumed to be the location of the supermassive black hole, SMBH) and the photo-center of the galaxy. The displacement is along a position angle of 307 +/- 17 degrees and is consistent with the jet axis. This suggests the active SMBH in M87 does not currently reside at the galaxy center of mass, but is displaced in the counter-jet direction. Possible explanations for the displacement include orbital motion of an SMBH binary, gravitational perturbations due to massive objects (e.g., globular clusters), acceleration by an asymmetric or intrinsically one-sided jet, and gravitational recoil resulting from the coalescence of an SMBH binary. The displacement direction favors the latter two mechanisms. However, jet asymmetry is only viable, at the observed accretion rate, for a jet age of >0.1 Gyr and if the galaxy restoring force is negligible. This could be the case in the low density core of M87. A moderate recoil ~1 Myr ago might explain the disturbed nature of the nuclear gas disk, could be aligned with the jet axis, and can produce the observed offset. Alternatively, the displacement could be due to residual oscillations resulting from a large recoil that occurred in the aftermath of a major merger any time in the last 1 Gyr.
We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravitational radiation. Green Bank Telescope observations at 22 GHz to search for water masers in this interesting system are also presented.
When galaxies collide, dynamical friction drives their central supermassive black holes close enought to each other such that gravitational radiation becomes the leading dissipative effect. Gravitational radiation takes away energy, momentum and angular momentum from the compact binary, such that the black holes finally merge. In the process, the spin of the dominant black hole is reoriented. On observational level, the spins are directly related to the jets, which can be seen at radio frequencies. Images of the X-shaped radio galaxies together with evidence on the age of the jets illustrate that the jets are reoriented, a phenomenon known as spin-flip. Based on the galaxy luminosity statistics we argue here that the typical galaxy encounters involve mass ratios between 1:3 to 1:30 for the central black holes. Based on the spin-orbit precession and gravitational radiation we also argue that for this typical mass ratio in the inspiral phase of the merger the initially dominant orbital angular momentum will become smaller than the spin, which will be reoriented. We prove here that the spin-flip phenomenon typically occurs already in the inspiral phase, and as such is describable by post-Newtonian techniques.