No Arabic abstract
Using a large sample of optical spectra of late-type dwarfs, we identify a subset of late-M through L field dwarfs that, because of the presence of low-gravity features in their spectra, are believed to be unusually young. From a combined sample of 303 field L dwarfs, we find observationally that 7.6+/-1.6% are younger than 100 Myr. This percentage is in agreement with theoretical predictions once observing biases are taken into account. We find that these young L dwarfs tend to fall in the southern hemisphere (Dec < 0 deg) and may be previously unrecognized, low-mass members of nearby, young associations like Tucana-Horologium, TW Hydrae, beta Pictoris, and AB Doradus. We use a homogeneously observed sample of roughly one hundred and fifty 6300-10000 Angstrom spectra of L and T dwarfs taken with the Low-Resolution Imaging Spectrometer at the W. M. Keck Observatory to examine the strength of the 6708-A Li I line as a function of spectral type and further corroborate the trends noted by Kirkpatrick et al. (2000). We use our low-gravity spectra to investigate the strength of the Li I line as a function of age. The data weakly suggest that for early- to mid-L dwarfs the line strength reaches a maximum for a few 100 Myr, whereas for much older (few Gyr) and much younger (<100 Myr) L dwarfs the line is weaker or undetectable. We show that a weakening of lithium at lower gravities is predicted by model atmosphere calculations, an effect partially corroborated by existing observational data. Larger samples containing L dwarfs of well determined ages are needed to further test this empirically. If verified, this result would reinforce the caveat first cited in Kirkpatrick et al. (2006) that the lithium test should be used with caution when attempting to confirm the substellar nature of the youngest brown dwarfs.
The I-Z colour has been recently shown to be a good temperature indicator for M dwarfs. We present the first IZ photometry of a small sample of L dwarfs ranging in spectral type from L0.5V to L6.0V. We find that the I-Z colour is not a good temperature indicator for objects between L1V and L5V, such objects having colours that overlap with mid M dwarfs. We attribute this to the reduction in the strength of the TiO and VO bands in the L dwarfs which are the dominant opacity source in the I band for late M dwarfs. Beyond L5V, I-Z appears to be a reasonable indicator. This has important implications for the planning of optical surveys for cool objects in clusters and the field. For example I-Z will cease to be a good method of discriminating brown dwarfs in the Pleiades below around 0.04 Msolar, and at around 0.075 Msolar in the Hyades and Praesepe.
We analyse pre-Main Sequence evolutionary tracks for low mass stars with masses $m le 1.4 msol$ based on the Baraffe et al. (1998) input physics. We also extend the recent Chabrier et al. (2000) evolutionary models based on dusty atmosphere to young brown dwarfs down to one mass of Jupiter. We analyse current theoretical uncertainties due to molecular line lists, convection and initial conditions. Simple tests on initial conditions show the high uncertainties of models at ages $simle$ 1 Myr. We find a significant sensitivity of atmosphere profiles to the treatment of convection at low gravity and $te < 4000$ K, whereas it vanishes as gravity increases. This effect adds another source of uncertainty on evolutionary tracks at very early phases. We show that at low surface gravity ($log g simle 3.5$,) the common picture of vertical Hayashi lines with constant $te$ is oversimplified. The effect of a variation of initial deuterium abundance is studied. We compare our models with evolutionary tracks available in the literature and discuss the main differences. We finally analyse to which extent current observations of young systems provide a good test for pre-Main Sequence tracks.
We present 27 new L subdwarfs and classify five of them as esdL and 22 as sdL. Our L subdwarf candidates were selected with the UKIRT Infrared Deep Sky Survey and Sloan Digital Sky Survey. Spectroscopic follow-up was carried out primarily with the OSIRIS spectrograph on the Gran Telescopio Canarias. Some of these new objects were followed up with the X-shooter instrument on the Very Large Telescope. We studied the photometric properties of the population of known L subdwarfs using colour-spectral type diagrams and colour-colour diagrams, by comparison with L dwarfs and main-sequence stars, and identified new colour spaces for L subdwarf selection/study in current and future surveys. We further discussed the brown dwarf transition-zone and the observational stellar/substellar boundary. We found that about one-third of 66 known L subdwarfs are substellar objects, with two-thirds being very low-mass stars. We also present the Hertzsprung-Russell diagrams, spectral type-absolute magnitude corrections, and tangential velocities of 20 known L subdwarfs observed by the Gaia astrometry satellite. One of our L subdwarf candidates, ULAS J233227.03+123452.0, is a mildly metal-poor spectroscopic binary brown dwarf: a ~L6p dwarf and a ~T4p dwarf. This binary is likely a thick disc member according to its kinematics.
We describe the results of a very deep imaging survey of the Trapezium Cluster in the IJH bands, using the UKIRT high resolution camera UFTI. Approximately 32% of the 515 point sources detected are brown dwarf candidates, including several free floating objects with masses below the Deuterium burning (planetary) threshold at 0.013 solar masses, which are detectable because of their extreme youth. We have confidence that almost all the sources detected are cluster members, since foreground contamination is minimal in the 33 arcmin^2 area surveyed and the dense backdrop of OMC-1 obscures all background stars at these wavelengths. Extinction is calculated from the (J-H)colours, permitting accurate luminosity estimates and temperatures are derived from the dereddened (I-J) colours. There is some evidence for a cut-off in the luminosity function below the level corresponding to several Jupiter masses, which may represent the bottom end of the IMF. Since star formation is complete in the Trapezium this limit could have wide significance, if confirmed. However, it could well be an effect of the dispersal of the molecular cloud by the central O-type stars, a process whose timescale will vary between star formation regions.
Current atmospheric models cannot reproduce some of the characteristics of the transition between the L dwarfs with cloudy atmospheres and the T dwarfs with dust-depleted photospheres. It has been proposed that a majority of the L/T transition brown dwarfs could actually be a combinaison of a cloudy L dwarf and a clear T dwarf. Indeed binarity seems to occur more frequently among L/T transition brown dwarfs. We aim to refine the statistical significance of the seemingly higher frequency of binaries. Co-eval binaries would also be interesting test-beds for evolutionary models. We obtained high-resolution imaging for six mid-L to late-T dwarfs, with photometric distances between 8 and 33pc, using the adaptive optics systems NACO at the VLT, and the Lick system, both with the laser guide star. We resolve none of our targets. Combining our data with published results, we obtain a frequency of resolved L/T transition brown dwarfs of (31+21-15)%, compared to (21+10-7)% and (14+14-7)% for mid-L and T dwarfs (90% of confidence level). These fractions do not significantly support, nor contradict, the hypothesis of a larger binary fraction in the L/T transition. None of our targets has companions with effective temperatures as low as 360-1000K at separations larger than 0.5.