Do you want to publish a course? Click here

Accelerating Scientific Computations with Mixed Precision Algorithms

121   0   0.0 ( 0 )
 Added by Julien Langou
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented.



rate research

Read More

SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.
Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the Machine Learning community and their demand for high compute power in low precision formats. Also the server-line products are increasingly featuring low-precision special function units, such as the NVIDIA tensor cores in ORNLs Summit supercomputer providing more than an order of magnitude higher performance than what is available in IEEE double precision. At the same time, the gap between the compute power on the one hand and the memory bandwidth on the other hand keeps increasing, making data access and communication prohibitively expensive compared to arithmetic operations. To start the multiprecision focus effort, we survey the numerical linear algebra community and summarize all existing multiprecision knowledge, expertise, and software capabilities in this landscape analysis report. We also include current efforts and preliminary results that may not yet be considered mature technology, but have the potential to grow into production quality within the multiprecision focus effort. As we expect the reader to be familiar with the basics of numerical linear algebra, we refrain from providing a detailed background on the algorithms themselves but focus on how mixed- and multiprecision technology can help improving the performance of these methods and present highlights of application significantly outperforming the traditional fixed precision methods.
Persistent homology is a topological feature used in a variety of applications such as generating features for data analysis and penalizing optimization problems. We develop an approach to accelerate persistent homology computations performed on many similar filtered topological spaces which is based on updating associated matrix factorizations. Our approach improves the update scheme of Cohen-Steiner, Edelsbrunner, and Morozov for permutations by additionally handling addition and deletion of cells in a filtered topological space and by processing changes in a single batch. We show that the complexity of our scheme scales with the number of elementary changes to the filtration which as a result is often less expensive than the full persistent homology computation. Finally, we perform computational experiments demonstrating practical speedups in several situations including feature generation and optimization guided by persistent homology.
Tensors (also commonly seen as multi-linear operators or as multi-dimensional arrays) are ubiquitous in scientific computing and in data science, and so are the software efforts for tensor operations. Particularly in recent years, we have observed an explosion in libraries, compilers, packages, and toolboxes; unfortunately these efforts are very much scattered among the different scientific domains, and inevitably suffer from replication, suboptimal implementations, and in many cases, limited visibility. As a first step towards countering these inefficiencies, here we survey and loosely classify software packages related to tensor computations. Our aim is to assemble a comprehensive and up-to-date snapshot of the tensor software landscape, with the intention of helping both users and developers. Aware of the difficulties inherent in any multi-discipline survey, we very much welcome the readers help in amending and expanding our software list, which currently features 72 projects.
We consider the post-training quantization problem, which discretizes the weights of pre-trained deep neural networks without re-training the model. We propose multipoint quantization, a quantization method that approximates a full-precision weight vector using a linear combination of multiple vectors of low-bit numbers; this is in contrast to typical quantization methods that approximate each weight using a single low precision number. Computationally, we construct the multipoint quantization with an efficient greedy selection procedure, and adaptively decides the number of low precision points on each quantized weight vector based on the error of its output. This allows us to achieve higher precision levels for important weights that greatly influence the outputs, yielding an effect of mixed precision but without physical mixed precision implementations (which requires specialized hardware accelerators). Empirically, our method can be implemented by common operands, bringing almost no memory and computation overhead. We show that our method outperforms a range of state-of-the-art methods on ImageNet classification and it can be generalized to more challenging tasks like PASCAL VOC object detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا