Do you want to publish a course? Click here

SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python

445   0   0.0 ( 0 )
 Added by Tyler Reddy
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.



rate research

Read More

On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented.
Containers are an emerging technology that hold promise for improving productivity and code portability in scientific computing. We examine Linux container technology for the distribution of a non-trivial scientific computing software stack and its execution on a spectrum of platforms from laptop computers through to high performance computing (HPC) systems. We show on a workstation and a leadership-class HPC system that when deployed appropriately there are no performance penalties running scientific programs inside containers. For Python code run on large parallel computers, the run time is reduced inside a container due to faster library imports. The software distribution approach and data that we present will help developers and users decide on whether container technology is appropriate for them. We also provide guidance for the vendors of HPC systems that rely on proprietary libraries for performance on what they can do to make containers work seamlessly and without performance penalty.
To facilitate flexible and efficient structural bioinformatics analyses, new functionality for three-dimensional structure processing and analysis has been introduced into PyCogent -- a popular feature-rich framework for sequence-based bioinformatics, but one which has lacked equally powerful tools for handling stuctural/coordinate-based data. Extensible Python modules have been developed, which provide object-oriented abstractions (based on a hierarchical representation of macromolecules), efficient data structures (e.g. kD-trees), fast implementations of common algorithms (e.g. surface-area calculations), read/write support for Protein Data Bank-related file formats and wrappers for external command-line applications (e.g. Stride). Integration of this code into PyCogent is symbiotic, allowing sequence-based work to benefit from structure-derived data and, reciprocally, enabling structural studies to leverage PyCogents versatile tools for phylogenetic and evolutionary analyses.
We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic efficiently on GPUs.
Graph algorithms can be expressed in terms of linear algebra. GraphBLAS is a library of low-level building blocks for such algorithms that targets algorithm developers. LAGraph builds on top of the GraphBLAS to target users of graph algorithms with high-level algorithms common in network analysis. In this paper, we describe the first release of the LAGraph library, the design decisions behind the library, and performance using the GAP benchmark suite. LAGraph, however, is much more than a library. It is also a project to document and analyze the full range of algorithms enabled by the GraphBLAS. To that end, we have developed a compact and intuitive notation for describing these algorithms. In this paper, we present that notation with examples from the GAP benchmark suite.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا