Do you want to publish a course? Click here

Achievable rate regions for bi-directional relaying

128   0   0.0 ( 0 )
 Added by Sang Joon Kim
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

In a bi-directional relay channel, two nodes wish to exchange independent messages over a shared wireless half-duplex channel with the help of a relay. In this paper, we derive achievable rate regions for four new half-duplex protocols and compare these to four existing half-duplex protocols and outer bounds. In time, our protocols consist of either two or three phases. In the two phase protocols, both users simultaneously transmit during the first phase and the relay alone transmits during the second phase, while in the three phase protocol the two users sequentially transmit followed by a transmission from the relay. The relay may forward information in one of four manners; we outline existing Amplify and Forward (AF), Decode and Forward (DF) and Compress and Forward (CF) relaying schemes and introduce the novel Mixed Forward scheme. The latter is a combination of CF in one direction and DF in the other. We derive achievable rate regions for the CF and Mixed relaying schemes for the two and three phase protocols. In the last part of this work we provide a comprehensive treatment of 8 possible half-duplex bi-directional relaying protocols in Gaussian noise, obtaining their respective achievable rate regions, outer bounds, and their relative performance under different SNR and relay geometries.



rate research

Read More

197 - Youlong Wu 2016
Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback are proposed. Specifically, we consider two-receiver memoryless broadcast channels where each receiver sends feedback signals to the transmitter through a noiseless and rate-limited feedback link, and meanwhile, acts as relay to transmit cooperative information to the other receiver. Its shown that the proposed rate regions improve on the known regions that consider either relaying cooperation or feedback communication, but not both.
79 - Xiaobo Zhou , Jun Li , Feng Shu 2018
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin-level optimization problem and solved by a one-dimensional (1D) search and semidefinite relaxation (SDR) technique. Then in order to reduce the search complexity, we formulate an optimization problem based on maximizing the signal-to-leakage-AN-noise-ratio (Max-SLANR) criterion, and transform it into a SDR problem. Additionally, the relaxation is proved to be tight according to the classic Karush-Kuhn-Tucker (KKT) conditions. Finally, to reduce the computational complexity, a successive convex approximation (SCA) scheme is proposed to find a near-optimal solution. The complexity of the SCA scheme is much lower than that of the SRM and the Max-SLANR schemes. Simulation results demonstrate that the performance of the SCA scheme is very close to that of the SRM scheme in terms of its secrecy rate and bit error rate (BER), but much better than that of the zero forcing (ZF) scheme.
A fiber optic channel is modeled in a variety of ways; from the simple additive white complex Gaussian noise model, to models that incorporate memory in the channel. Because of Kerr nonlinearity, a simple model is not a good approximation to an optical fiber. Hence we study a fiber optic channel with finite memory and provide an achievable bound on channel capacity that improves upon a previously known bound.
A partially cooperative relay broadcast channel (RBC) is a three-node network with one source node and two destination nodes (destinations 1 and 2) where destination 1 can act as a relay to assist destination 2. Inner and outer bounds on the capacity region of the discrete memoryless partially cooperative RBC are obtained. When the relay function is disabled, the inner and outer bounds reduce to new bounds on the capacity region of broadcast channels. Four classes of RBCs are studied in detail. For the partially cooperative RBC with degraded message sets, inner and outer bounds are obtained. For the semideterministic partially cooperative RBC and the orthogonal partially cooperative RBC, the capacity regions are established. For the parallel partially cooperative RBC with unmatched degraded subchannels, the capacity region is established for the case of degraded message sets. The capacity is also established when the source node has only a private message for destination 2, i.e., the channel reduces to a parallel relay channel with unmatched degraded subchannels.
In a bi-directional relay channel, two nodes wish to exchange independent messages over a shared wireless half-duplex channel with the help of relays. Recent work has considered information theoretic limits of the bi-directional relay channel with a single relay. In this work we consider bi-directional relaying with multiple relays. We derive achievable rate regions and outer bounds for half-duplex protocols with multiple decode and forward relays and compare these to the same protocols with amplify and forward relays in an additive white Gaussian noise channel. We consider three novel classes of half-duplex protocols: the (m,2) 2 phase protocol with m relays, the (m,3) 3 phase protocol with m relays, and general (m, t) Multiple Hops and Multiple Relays (MHMR) protocols, where m is the total number of relays and 3<t< m+3 is the number of temporal phases in the protocol. The (m,2) and (m,3) protocols extend previous bi-directional relaying protocols for a single m=1 relay, while the new (m,t) protocol efficiently combines multi-hop routing with message-level network coding. Finally, we provide a comprehensive treatment of the MHMR protocols with decode and forward relaying and amplify and forward relaying in the Gaussian noise, obtaining their respective achievable rate regions, outer bounds and relative performance under different SNRs and relay geometries, including an analytical comparison on the protocols at low and high SNR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا