No Arabic abstract
Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback are proposed. Specifically, we consider two-receiver memoryless broadcast channels where each receiver sends feedback signals to the transmitter through a noiseless and rate-limited feedback link, and meanwhile, acts as relay to transmit cooperative information to the other receiver. Its shown that the proposed rate regions improve on the known regions that consider either relaying cooperation or feedback communication, but not both.
A partially cooperative relay broadcast channel (RBC) is a three-node network with one source node and two destination nodes (destinations 1 and 2) where destination 1 can act as a relay to assist destination 2. Inner and outer bounds on the capacity region of the discrete memoryless partially cooperative RBC are obtained. When the relay function is disabled, the inner and outer bounds reduce to new bounds on the capacity region of broadcast channels. Four classes of RBCs are studied in detail. For the partially cooperative RBC with degraded message sets, inner and outer bounds are obtained. For the semideterministic partially cooperative RBC and the orthogonal partially cooperative RBC, the capacity regions are established. For the parallel partially cooperative RBC with unmatched degraded subchannels, the capacity region is established for the case of degraded message sets. The capacity is also established when the source node has only a private message for destination 2, i.e., the channel reduces to a parallel relay channel with unmatched degraded subchannels.
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.
In a bi-directional relay channel, two nodes wish to exchange independent messages over a shared wireless half-duplex channel with the help of a relay. In this paper, we derive achievable rate regions for four new half-duplex protocols and compare these to four existing half-duplex protocols and outer bounds. In time, our protocols consist of either two or three phases. In the two phase protocols, both users simultaneously transmit during the first phase and the relay alone transmits during the second phase, while in the three phase protocol the two users sequentially transmit followed by a transmission from the relay. The relay may forward information in one of four manners; we outline existing Amplify and Forward (AF), Decode and Forward (DF) and Compress and Forward (CF) relaying schemes and introduce the novel Mixed Forward scheme. The latter is a combination of CF in one direction and DF in the other. We derive achievable rate regions for the CF and Mixed relaying schemes for the two and three phase protocols. In the last part of this work we provide a comprehensive treatment of 8 possible half-duplex bi-directional relaying protocols in Gaussian noise, obtaining their respective achievable rate regions, outer bounds, and their relative performance under different SNR and relay geometries.
In this paper, a class of broadcast interference channels (BIC) is investigated, where one of the two broadcast receivers is subject to interference coming from a point-to-point transmission. For a general discrete memoryless broadcast interference channel (DM-BIC), an achievable scheme based on message splitting, superposition and binning is proposed and a concise representation of the corresponding achievable rate region R is obtained. Two partial-order broadcast conditions interference-oblivious less noisy and interference-cognizant less noisy are defined, thereby extending the usual less noisy condition for a regular broadcast channel by taking interference into account. Under these conditions, a reduced form of R is shown to be equivalent to a rate region based on a simpler scheme, where the broadcast transmitter uses only superposition. Furthermore, if interference is strong for the interference-oblivious less noisy DM-BIC, the capacity region is given by the aforementioned two equivalent rate regions. For a Gaussian broadcast interference channel (GBIC), channel parameters are categorized into three regimes. For the first two regimes, which are closely related to the two partial-order broadcast conditions, achievable rate regions are derived by specializing the corresponding achievable schemes of DM-BICs with Gaussian input distributions. The entropy power inequality (EPI) based outer bounds are obtained by combining bounding techniques for a Gaussian broadcast channel (GBC) and a Gaussian interference channel (GIC). These inner and outer bounds lead to either exact or approximate characterizations of capacity regions and sum capacity under various conditions. For the remaining complementing regime, inner and outer bounds are also provided.
This paper focuses on $ K $-receiver discrete-time memoryless broadcast channels (DM-BCs) with private messages, where the transmitter wishes to convey $K$ private messages to $K$ receivers respectively. A general inner bound on the capacity region is proposed based on an exhaustive message splitting and a $K$-level modified Martons coding. The key idea is to split every message into $ sum_{j=1}^K {Kchoose j} $ submessages each corresponding to a set of users who are assigned to recover them, and then send these submessages through codewords that are jointly typical with each other. To guarantee the joint typicality among all transmitted codewords, a sufficient condition on the subcodebooks sizes is derived through a newly establishing hierarchical covering lemma, which extends the 2-level multivariate covering lemma to the $K$-level case including $(2^{K}-1)$ random variables with more intricate dependence. As the number of auxiliary random variables and rate constraints both increase linearly with $(2^{K}-1)$, the standard Fourier-Motzkin elimination procedure becomes infeasible when $K$ is large. To tackle this problem, we obtain the final form of achievable rate region with a special observation of disjoint unions of sets that constitute the power set of $ {1,dots,K}$. The proposed achievable rate region allows arbitrary input probability mass functions (pmfs) and improves over all previously known ones for $ K$-receiver ($Kgeq 3$) BCs whose input pmfs should satisfy certain Markov chain(s).