Do you want to publish a course? Click here

Directed flow in non-adiabatic stochastic pumps

110   0   0.0 ( 0 )
 Added by Jordan Horowitz
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the operation of a molecular machine driven by the non-adiabatic variation of external parameters. We derive a formula for the integrated flow from one configuration to another, obtain a no-pumping theorem for cyclic processes with thermally activated transitions, and show that in the adiabatic limit the pumped current is given by a geometric expression.



rate research

Read More

149 - Shahaf Asban , Saar Rahav 2013
Stochastic pumps are models of artificial molecular machines which are driven by periodic time variation of parameters, such as site and barrier energies. The no-pumping theorem states that no directed motion is generated by variation of only site or barrier energies [S. Rahav, J. Horowitz, and C. Jarzynski, Phys. Rev. Lett., 101, 140602 (2008)]. We study stochastic pumps of several interacting particles and demonstrate that the net current of particles satisfy an additional no- pumping theorem.
We propose a minimal model for the emergence of a directed flow in autonomous Hamiltonian systems. It is shown that internal breaking of the spatio-temporal symmetries, via localised initial conditions, that are unbiased with respect to the transporting degree of freedom, and transient chaos conspire to form the physical mechanism for the occurrence of a current. Most importantly, after passage through the transient chaos, trajectories perform solely regular transporting motion so that the resulting current is of continual ballistic nature. This has to be distinguished from the features of transport reported previously for driven Hamiltonian systems with mixed phase space where transport is determined by intermittent behaviour exhibiting power-law decay statistics of the duration of regular ballistic periods.
247 - U. Basu , P. K. Mohanty 2014
We introduce a stochastic sandpile model where finite drive and dissipation are coupled to the activity field. The absorbing phase transition here, as expected, belongs to the directed percolation (DP) universality class. We focus on the small drive and dissipation limit, i.e. the so-called self-organised critical (SOC) regime and show that the system exhibits a crossover from ordinary DP scaling to a dissipation-controlled scaling which is independent of the underlying dynamics or spatial dimension. The new scaling regime continues all the way to the zero bulk drive limit suggesting that the corresponding SOC behaviour is only DP, modified by the dissipation-controlled scaling. We demonstrate this for the continuous and discrete Manna model driven by noise and bulk dissipation.
144 - V.G. Rousseau 2008
In a recent publication (Phys. Rev E 77, 056705 (2008)),we have presented the stochastic Green function (SGF) algorithm, which has the properties of being general and easy to apply to any lattice Hamiltonian of the form H=V-T, where V is diagonal in the chosen occupation number basis and T has only positive matrix elements. We propose here a modified version of the update scheme that keeps the simplicity and generality of the original SGF algorithm, and enhances significantly its efficiency.
We present a general approach to describe slowly driven quantum systems both in real and imaginary time. We highlight many similarities, qualitative and quantitative, between real and imaginary time evolution. We discuss how the metric tensor and the Berry curvature can be extracted from both real and imaginary time simulations as a response of physical observables. For quenches ending at or near the quantum critical point, we show the utility of the scaling theory for detecting the location of the quantum critical point by comparing sweeps at different velocities. We briefly discuss the universal relaxation to equilibrium of systems after a quench. We finally review recent developments of quantum Monte Carlo methods for studying imaginary-time evolution. We illustrate our findings with explicit calculations using the transverse field Ising model in one dimension.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا