Do you want to publish a course? Click here

Principle of detailed balance and convergence assessment of Markov Chain Monte Carlo methods and simulated annealing

176   0   0.0 ( 0 )
 Added by Ioana Cosma
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Markov Chain Monte Carlo (MCMC) methods are employed to sample from a given distribution of interest, whenever either the distribution does not exist in closed form, or, if it does, no efficient method to simulate an independent sample from it is available. Although a wealth of diagnostic tools for convergence assessment of MCMC methods have been proposed in the last two decades, the search for a dependable and easy to implement tool is ongoing. We present in this article a criterion based on the principle of detailed balance which provides a qualitative assessment of the convergence of a given chain. The criterion is based on the behaviour of a one-dimensional statistic, whose asymptotic distribution under the assumption of stationarity is derived; our results apply under weak conditions and have the advantage of being completely intuitive. We implement this criterion as a stopping rule for simulated annealing in the problem of finding maximum likelihood estimators for parameters of a 20-component mixture model. We also apply it to the problem of sampling from a 10-dimensional funnel distribution via slice sampling and the Metropolis-Hastings algorithm. Furthermore, based on this convergence criterion we define a measure of efficiency of one algorithm versus another.



rate research

Read More

106 - Vivekananda Roy 2019
Markov chain Monte Carlo (MCMC) is one of the most useful approaches to scientific computing because of its flexible construction, ease of use and generality. Indeed, MCMC is indispensable for performing Bayesian analysis. Two critical questions that MCMC practitioners need to address are where to start and when to stop the simulation. Although a great amount of research has gone into establishing convergence criteria and stopping rules with sound theoretical foundation, in practice, MCMC users often decide convergence by applying empirical diagnostic tools. This review article discusses the most widely used MCMC convergence diagnostic tools. Some recently proposed stopping rules with firm theoretical footing are also presented. The convergence diagnostics and stopping rules are illustrated using three detailed examples.
It is commonly admitted that non-reversible Markov chain Monte Carlo (MCMC) algorithms usually yield more accurate MCMC estimators than their reversible counterparts. In this note, we show that in addition to their variance reduction effect, some non-reversible MCMC algorithms have also the undesirable property to slow down the convergence of the Markov chain. This point, which has been overlooked by the literature, has obvious practical implications. We illustrate this phenomenon for different non-reversib
Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompanying methodology, borrowing ideas from statistical physics and computational chemistry, for inferring the posterior distribution of latent diffusion paths and model parameters, given observations of the process. Joint configurations of the underlying process noise and of parameters, mapping onto diffusion paths consistent with observations, form an implicitly defined manifold. Then, by making use of a constrained Hamiltonian Monte Carlo algorithm on the embedded manifold, we are able to perform computationally efficient inference for an extensive class of discretely observed diffusion models. Critically, in contrast with other approaches proposed in the literature, our methodology is highly automated, requiring minimal user intervention and applying alike in a range of settings, including: elliptic or hypo-elliptic systems; observations with or without noise; linear or non-linear observation operators. Exploiting Markovianity, we propose a variant of the method with complexity that scales linearly in the resolution of path discretisation and the number of observation times.
We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached that can be accepted. This is achieved using Markov chain transitions that satisfy the fixed point equation, but do not satisfy detailed balance. The resulting algorithm significantly suppresses the random walk behavior and wasted function evaluations that are typically the consequence of update rejection. We demonstrate a greater than factor of two improvement in mixing time on three test problems. We release the source code as Python and MATLAB packages.
We attempt to trace the history and development of Markov chain Monte Carlo (MCMC) from its early inception in the late 1940s through its use today. We see how the earlier stages of Monte Carlo (MC, not MCMC) research have led to the algorithms currently in use. More importantly, we see how the development of this methodology has not only changed our solutions to problems, but has changed the way we think about problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا