Do you want to publish a course? Click here

A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data

128   0   0.0 ( 0 )
 Added by Christian Robert
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We attempt to trace the history and development of Markov chain Monte Carlo (MCMC) from its early inception in the late 1940s through its use today. We see how the earlier stages of Monte Carlo (MC, not MCMC) research have led to the algorithms currently in use. More importantly, we see how the development of this methodology has not only changed our solutions to problems, but has changed the way we think about problems.



rate research

Read More

Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompanying methodology, borrowing ideas from statistical physics and computational chemistry, for inferring the posterior distribution of latent diffusion paths and model parameters, given observations of the process. Joint configurations of the underlying process noise and of parameters, mapping onto diffusion paths consistent with observations, form an implicitly defined manifold. Then, by making use of a constrained Hamiltonian Monte Carlo algorithm on the embedded manifold, we are able to perform computationally efficient inference for an extensive class of discretely observed diffusion models. Critically, in contrast with other approaches proposed in the literature, our methodology is highly automated, requiring minimal user intervention and applying alike in a range of settings, including: elliptic or hypo-elliptic systems; observations with or without noise; linear or non-linear observation operators. Exploiting Markovianity, we propose a variant of the method with complexity that scales linearly in the resolution of path discretisation and the number of observation times.
An important task in machine learning and statistics is the approximation of a probability measure by an empirical measure supported on a discrete point set. Stein Points are a class of algorithms for this task, which proceed by sequentially minimising a Stein discrepancy between the empirical measure and the target and, hence, require the solution of a non-convex optimisation problem to obtain each new point. This paper removes the need to solve this optimisation problem by, instead, selecting each new point based on a Markov chain sample path. This significantly reduces the computational cost of Stein Points and leads to a suite of algorithms that are straightforward to implement. The new algorithms are illustrated on a set of challenging Bayesian inference problems, and rigorous theoretical guarantees of consistency are established.
We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an extended space. We present empirical results that show significant improvements in mixing rates relative to both non-interacting PMCMC samplers, and a single PMCMC sampler with an equivalent memory and computational budget. An additional advantage of the iPMCMC method is that it is suitable for distributed and multi-core architectures.
In this article we consider computing expectations w.r.t.~probability laws associated to a certain class of stochastic systems. In order to achieve such a task, one must not only resort to numerical approximation of the expectation, but also to a biased discretization of the associated probability. We are concerned with the situation for which the discretization is required in multiple dimensions, for instance in space and time. In such contexts, it is known that the multi-index Monte Carlo (MIMC) method can improve upon i.i.d.~sampling from the most accurate approximation of the probability law. Indeed by a non-trivial modification of the multilevel Monte Carlo (MLMC) method and it can reduce the work to obtain a given level of error, relative to the afore mentioned i.i.d.~sampling and relative even to MLMC. In this article we consider the case when such probability laws are too complex to sampled independently. We develop a modification of the MIMC method which allows one to use standard Markov chain Monte Carlo (MCMC) algorithms to replace independent and coupled sampling, in certain contexts. We prove a variance theorem which shows that using our MIMCMC method is preferable, in the sense above, to i.i.d.~sampling from the most accurate approximation, under assumptions. The method is numerically illustrated on a problem associated to a stochastic partial differential equation (SPDE).
Markov Chain Monte Carlo (MCMC) methods are employed to sample from a given distribution of interest, whenever either the distribution does not exist in closed form, or, if it does, no efficient method to simulate an independent sample from it is available. Although a wealth of diagnostic tools for convergence assessment of MCMC methods have been proposed in the last two decades, the search for a dependable and easy to implement tool is ongoing. We present in this article a criterion based on the principle of detailed balance which provides a qualitative assessment of the convergence of a given chain. The criterion is based on the behaviour of a one-dimensional statistic, whose asymptotic distribution under the assumption of stationarity is derived; our results apply under weak conditions and have the advantage of being completely intuitive. We implement this criterion as a stopping rule for simulated annealing in the problem of finding maximum likelihood estimators for parameters of a 20-component mixture model. We also apply it to the problem of sampling from a 10-dimensional funnel distribution via slice sampling and the Metropolis-Hastings algorithm. Furthermore, based on this convergence criterion we define a measure of efficiency of one algorithm versus another.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا