No Arabic abstract
We consider the alternating sign matrices of the odd order that have some kind of central symmetry. Namely, we deal with matrices invariant under the half-turn, quarter-turn and flips in both diagonals. In all these cases, there are two natural structures in the centre of the matrix. For example, for the matrices invariant under the half-turn the central element is equal $pm 1$. It was recently found that $A^+_{HT}(2m+1)/A^-_{HT}(2m+1)$=(m+1)/m. We conjecture that similar very simple relations are valid in the two remaining cases.
It was shown by Kuperberg that the partition function of the square-ice model related to the quarter-turn symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection with the quarter-turn symmetric alternating-sign matrices of odd order, and show that the partition function of this model can be also written in a similar way. This allows to prove, in particular, the conjectures by Robbins related to the enumeration of the quarter-turn symmetric alternating-sign matrices.
It was shown by Kuperberg that the partition function of the square-ice model related to half-turn symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection with half-turn symmetric alternating-sign matrices of odd order. The partition function of the model is expressed via the above mentioned factors. The contributions to the partition function of the states corresponding to the alternating-sign matrices having 1 or -1 as the central entry are found and the related enumerations are obtained.
Let $A(n,r;3)$ be the total weight of the alternating sign matrices of order $n$ whose sole `1 of the first row is at the $r^{th}$ column and the weight of an individual matrix is $3^k$ if it has $k$ entries equal to -1. Define the sequence of the generating functions $G_n(t)=sum_{r=1}^n A(n,r;3)t^{r-1}$. Results of two different kind are obtained. On the one hand I made the explicit expression for the even subsequence $G_{2 u}(t)$ in terms of two linear homogeneous second order recurrence in $ u$ (Theorem 1). On the other hand I brought to light the nice connection between the neighbouring functions $G_{2 u+1}(t)$ and $G_{2 u}(t)$ (Theorem 2). The 3-enumeration $A(n;3) equiv G_n(1)$ which was found by Kuperberg is reproduced as well.
Quasi-symmetry of a steady magnetic field means integrability of first-order guiding-centre motion. Here we derive many restrictions on the possibilities for a quasi-symmetry. We also derive an analogue of the Grad-Shafranov equation for the flux function in a quasi-symmetric magnetohydrostatic field.
The Birkhoffs theorem states that any doubly stochastic matrix lies inside a convex polytope with the permutation matrices at the corners. It can be proven that a similar theorem holds for unitary matrices with equal line sums for prime dimensions.