No Arabic abstract
As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C76, 065201 (2007). The channels included are pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N resonant components. The non-resonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N^*) states which are dressed by the non-resonant interactions as constrained by the unitarity condition. The data of total cross sections and pi N and pi pi invariant mass distributions of pi^+ p --> pi^+ pi^+ n, pi^+ pi^0p and pi^- p --> pi^+ pi^- n, pi^- pi^0 n, pi^0 pi^0 n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference between the contributions from the pi Delta, sigma N, and rho N channels. The large interference between the resonant and non-resonant amplitudes is also demonstrated. Possible future developements are discussed.
We have developed a model for the N N --> N N pi pi reaction and evaluated cross sections for the different charged channels. The low energy part of those channels where the pions can be in an isospin zero state is dominated by N* excitation, driven by an isoscalar source recently found experimentally, followed by the decay N* --> N (pi pi, T=0, s-wave). At higher energies, and in channels where the pions are not in T=0, Delta excitation mechanisms become relevant. A rough agreement with the experimental data is obtained in most channels. Repercussions of the present findings for the ABC effect and the p p --> p p pi0 reaction close to threshold are also suggested.
The reaction $pi^{-}p to eta n$ is investigated within a dynamical coupled-channels model of meson production reactions in the nucleon resonance region. The meson baryon channels included are $pi N$, $eta N$, $pi Delta$, $sigma N$, and $rho N$. The non-resonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two excited nucleon states in each of $S$, $P$, $D$, and $F$ partial waves are included to generate the resonant amplitudes. Data of $pi^{-}p to eta n$ reaction from threshold up to a total center-of-mass energy of about 2 GeV are satisfactorily reproduced and the roles played by the following nine nucleon resonances are investigated: $S_{11}(1535)$, $S_{11}(1650)$, $P_{11}(1440)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1520)$, $D_{13}(1700)$, $D_{15}(1675)$, and $F_{15}(1680)$. The reaction mechanism as well as the predicted $eta N$ scattering length are discussed.
The N*(1440) -> N pi pi decay is studied by making use of the chiral reduction formula. This formula suggests a scalar-isoscalar pion-baryon contact interaction which is absent in the recent study of Hern{a}ndez et al. The contact interaction is introduced into their model, and is found to be necessary for the simultaneous description of g_{RN pi pi} and the pi-pi and pi-N invariant mass distributions.
The production of eta mesons in photon- and hadron-induced reactions has been revisited in view of the recent additions of high-precision data to the world data base. Based on an effective Lagrangian approach, we have performed a combined analysis of the free and quasi-free gamma N -> eta N, N N -> N N eta, and pi N -> eta N reactions. Considering spin-1/2 and -3/2 resonances, we found that a set of above-threshold resonances {S_{11}, P_{11}, P_{13}}, with fitted mass values of about M_R=1925, 2130, and 2050 MeV, respectively, and the four-star sub-threshold P_{13}(1720) resonance reproduce best all existing data for the eta production processes in the resonance-energy region considered in this work. All three above-threshold resonances found in the present analysis are essential and indispensable for the good quality of the present fits.
We have performed a dynamical coupled-channels analysis of available p(e,epi)N data in the region of W < 1.6 GeV and Q^2 < 1.45 (GeV/c)^2. The channels included are gamma^* N, pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N components. With the hadronic parameters of the model determined in our previous investigations of pi N --> pi N, pi pi N reactions, we have found that the available data in the considered W < 1.6 GeV region can be fitted well by only adjusting the bare gamma^* N --> N^* helicity amplitudes for the lowest N^* states in P33, P11, S11 and D13 partial waves. The sensitivity of the resulting parameters to the amount of data included in the analysis is investigated. The importance of coupled-channels effect on the p(e,e pi)N cross sections is demonstrated. The meson cloud effects, as required by the unitarity conditions, on the gamma^* N --> N^* form factors are also examined. Necessary future developments, both experimentally and theoretically, are discussed.