Do you want to publish a course? Click here

Coupled-channels study of the $pi^{-}p to eta n$ process

165   0   0.0 ( 0 )
 Added by Bijan Saghai
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The reaction $pi^{-}p to eta n$ is investigated within a dynamical coupled-channels model of meson production reactions in the nucleon resonance region. The meson baryon channels included are $pi N$, $eta N$, $pi Delta$, $sigma N$, and $rho N$. The non-resonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two excited nucleon states in each of $S$, $P$, $D$, and $F$ partial waves are included to generate the resonant amplitudes. Data of $pi^{-}p to eta n$ reaction from threshold up to a total center-of-mass energy of about 2 GeV are satisfactorily reproduced and the roles played by the following nine nucleon resonances are investigated: $S_{11}(1535)$, $S_{11}(1650)$, $P_{11}(1440)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1520)$, $D_{13}(1700)$, $D_{15}(1675)$, and $F_{15}(1680)$. The reaction mechanism as well as the predicted $eta N$ scattering length are discussed.



rate research

Read More

As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C76, 065201 (2007). The channels included are pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N resonant components. The non-resonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N^*) states which are dressed by the non-resonant interactions as constrained by the unitarity condition. The data of total cross sections and pi N and pi pi invariant mass distributions of pi^+ p --> pi^+ pi^+ n, pi^+ pi^0p and pi^- p --> pi^+ pi^- n, pi^- pi^0 n, pi^0 pi^0 n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference between the contributions from the pi Delta, sigma N, and rho N channels. The large interference between the resonant and non-resonant amplitudes is also demonstrated. Possible future developements are discussed.
A dynamical coupled-channels formalism is used to investigate the $eta-$meson production mechanism on the proton induced by pions, in the total center-of-mass energy region from threshold up to 2 GeV. We show how and why studying exclusively total cross section data might turn out to be misleading in pinning down the reaction mechanism.
Nucleon pole contributions in $J/psi to N bar N pi$, $p bar p eta$, $p bar p eta^{prime}$ and $p bar{p} omega$ decays are re-studied. Different contributions due to PS-PS and PS-PV couplings in the $pi$-N interaction and the effects of $NNpi$ form factors are investigated in the $J/psi to N bar N pi$ decay channel. It is found that when the ratio of $|F_0| /|F_M|$ takes small value, without considering the $NNpi$ form factor, the difference between PS-PS and PS-PV couplings are negligible. However, when the $NNpi$ form factor is included, this difference is greatly enlarged. The resultant decay widths are sensitive to the form factors. As a conclusion, the nucleon-pole contribution as a background is important in the $J/psito Nbar{N}pi$ decay and must be accounted. In the $J/psito Nbar{N}eta$ and $Nbar{N}eta$ decays, its contribution is less than 0.1% of the data. In the $J/psito Nbar{N}omega$ decay, it provides rather important contribution without considering form factors. But the contribution is suppressed greatly when adding the off-shell form factors. Comparing these results with data would help us to select a proper form factor for such kind of decay.
The production of eta mesons in photon- and hadron-induced reactions has been revisited in view of the recent additions of high-precision data to the world data base. Based on an effective Lagrangian approach, we have performed a combined analysis of the free and quasi-free gamma N -> eta N, N N -> N N eta, and pi N -> eta N reactions. Considering spin-1/2 and -3/2 resonances, we found that a set of above-threshold resonances {S_{11}, P_{11}, P_{13}}, with fitted mass values of about M_R=1925, 2130, and 2050 MeV, respectively, and the four-star sub-threshold P_{13}(1720) resonance reproduce best all existing data for the eta production processes in the resonance-energy region considered in this work. All three above-threshold resonances found in the present analysis are essential and indispensable for the good quality of the present fits.
Two reactions, pp->ppX and pp->ppi^+X, are used to study the 1.47<M<1.68 GeV baryonic mass range. Three different final states are considered in the invariant masses: N^* or Delta^+, ppi^0, and peta. The last two channels are defined by software cuts applied to the missing mass of the first reaction. Several narrow structures are extracted with widths sigma(Gamma) varying between 3 and 9 MeV. Some structures are observed in one channel but not in others. Such nonobservation may be due either to the spectrometer momenta limits or to the physics (e.g. no such disintegration channel is allowed from the narrow state considered). We tentatively conclude that the broad Particle Data Group (PDG) baryonic resonances N(1520)D13, N(1535)S11, Delta(1600)P33, and N(1675)D15 are collective states built from several narrow and weakly excited resonances, each having a (much) smaller width than the one reported by PDG.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا