The solid-solid coexistence of a polydisperse hard sphere system is studied by using the Monte Carlo simulation. The results show that for large enough polydispersity the solid-solid coexistence state is more stable than the single-phase solid. The two coexisting solids have different composition distributions but the same crystal structure. Moreover, there is evidence that the solid-solid transition terminates in a critical point as in the case of the fluid-fluid transition.
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields. The case of continuous polydispersity thereby becomes tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this, by a perturbation theory for narrow distributions, with the reversible work for changing the size of one particle in a monodisperse reference fluid.
A new Monte Carlo approach is proposed to investigate the fluid-solid phase transition of the polydisperse system. By using the extended ensemble, a reversible path was constructed to link the monodisperse and corresponding polydisperse system. Once the fluid-solid coexistence point of the monodisperse system is known, the fluid-solid coexistence point of the polydisperse system can be obtained from the simulation. The validity of the method is checked by the simulation of the fluid-solid phase transition of a size-polydisperse hard sphere colloid. The results are in agreement with the previous studies.
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte Carlo (MC) simulations to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB) which for a specific set of parameters sustains three solid phases: honeycomb, oblique and triangular. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by heating. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common believe and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as linear strip followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions which enables the dominance of stabilizing energy over the destabilizing surface energy. The nuclei of stable oblique phase are wetted by intermediate order particles which minimizes the surface free energy. We observe different pathways for pressure and temperature induced transitions.
Longitudinal and transverse sound velocities of Lennard-Jones systems are calculated at the liquid-solid coexistence using the additivity principle. The results are shown to agree well with the ``exact values obtained from their relations to excess energy and pressure. Some consequences, in particular, in the context of the Lindemanns melting rule and Stokes-Einstein relation between the self-diffusion and viscosity coefficients are discussed. Comparison with available experimental data on the sound velocities of solid argon at melting conditions is provided.
The complex behavior of confined fluids arising due to a competition between layering and local packing can be disentangled by considering quasi-confined liquids, where periodic boundary conditions along the confining direction restore translational invariance. This system provides a means to investigate the interplay of the relevant length scales of the confinement and the local order. We provide a mode-coupling theory of the glass transition (MCT) for quasi-confined liquids and elaborate an efficient method for the numerical implementation. The nonergodicity parameters in MCT are compared to computer-simulation results for a hard-sphere fluid. We evaluate the nonequilibrium-state diagram and investigate the collective intermediate scattering function. For both methods, nonmonotonic behavior depending on the confinement length is observed.