Do you want to publish a course? Click here

Percolation of arbitrary words in one dimension

355   0   0.0 ( 0 )
 Added by Thomas Liggett
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We consider a type of long-range percolation problem on the positive integers, motivated by earlier work of others on the appearance of (in)finite words within a site percolation model. The main issue is whether a given infinite binary word appears within an iid Bernoulli sequence at locations that satisfy certain constraints. We settle the issue in some cases, and provide partial results in others.



rate research

Read More

88 - Markus Heydenreich 2019
There are various notions of dimension in fractal geometry to characterise (random and non-random) subsets of $mathbb R^d$. In this expository text, we discuss their analogues for infinite subsets of $mathbb Z^d$ and, more generally, for infinite graphs. We then apply these notions to critical percolation clusters, where the various dimensions have different values.
119 - Peter Gacs 2012
Let v, w be infinite 0-1 sequences, and m a positive integer. We say that w is m-embeddable in v, if there exists an increasing sequence n_{i} of integers with n_{0}=0, such that 0< n_{i} - n_{i-1} < m, w(i) = v(n_i) for all i > 0. Let X and Y be independent coin-tossing sequences. We will show that there is an m with the property that Y is m-embeddable into X with positive probability. This answers a question that was open for a while. The proof generalizes somewhat the hierarchical method of an earlier paper of the author on dependent percolation.
We prove distributional convergence for a family of random processes on $mathbb{Z}$, which we call cooperative motions. The model generalizes the totally asymmetric hipster random walk introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitchell, 2020]. We present a novel approach based on connecting a temporal recurrence relation satisfied by the cumulative distribution functions of the process to the theory of finite difference schemes for Hamilton-Jacobi equations [Crandall and Lyons, 1984]. We also point out some surprising lattice effects that can persist in the distributional limit, and propose several generalizations and directions for future research.
We relate various concepts of fractal dimension of the limiting set C in fractal percolation to the dimensions of the set consisting of connected components larger than one point and its complement in C (the dust). In two dimensions, we also show that the set consisting of connected components larger than one point is a.s. the union of non-trivial Holder continuous curves, all with the same exponent. Finally, we give a short proof of the fact that in two dimensions, any curve in the limiting set must have Hausdorff dimension strictly larger than 1.
We study the scaling limit of a large class of voter model perturbations in one dimension, including stochastic Potts models, to a universal limiting object, the continuum voter model perturbation. The perturbations can be described in terms of bulk and boundary nucleations of new colors (opinions). The discrete and continuum (space) models are obtained from their respective duals, the discrete net with killing and Brownian net with killing. These determine the color genealogy by means of reduced graphs. We focus our attention on models where the voter and boundary nucleation dynamics depend only on the colors of nearest neighbor sites, for which convergence of the discrete net with killing to its continuum analog was proved in an earlier paper by the authors. We use some detailed properties of the Brownian net with killing to prove voter model perturbations convergence to its continuum counterpart. A crucial property of reduced graphs is that even in the continuum, they are finite almost surely. An important issue is how vertices of the continuum reduced graphs are strongly approximated by their discrete analogues.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا