Do you want to publish a course? Click here

Cooperative motion in one dimension

56   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We prove distributional convergence for a family of random processes on $mathbb{Z}$, which we call cooperative motions. The model generalizes the totally asymmetric hipster random walk introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitchell, 2020]. We present a novel approach based on connecting a temporal recurrence relation satisfied by the cumulative distribution functions of the process to the theory of finite difference schemes for Hamilton-Jacobi equations [Crandall and Lyons, 1984]. We also point out some surprising lattice effects that can persist in the distributional limit, and propose several generalizations and directions for future research.



rate research

Read More

118 - Peter Gacs 2012
Let v, w be infinite 0-1 sequences, and m a positive integer. We say that w is m-embeddable in v, if there exists an increasing sequence n_{i} of integers with n_{0}=0, such that 0< n_{i} - n_{i-1} < m, w(i) = v(n_i) for all i > 0. Let X and Y be independent coin-tossing sequences. We will show that there is an m with the property that Y is m-embeddable into X with positive probability. This answers a question that was open for a while. The proof generalizes somewhat the hierarchical method of an earlier paper of the author on dependent percolation.
We consider a type of long-range percolation problem on the positive integers, motivated by earlier work of others on the appearance of (in)finite words within a site percolation model. The main issue is whether a given infinite binary word appears within an iid Bernoulli sequence at locations that satisfy certain constraints. We settle the issue in some cases, and provide partial results in others.
We study the scaling limit of a large class of voter model perturbations in one dimension, including stochastic Potts models, to a universal limiting object, the continuum voter model perturbation. The perturbations can be described in terms of bulk and boundary nucleations of new colors (opinions). The discrete and continuum (space) models are obtained from their respective duals, the discrete net with killing and Brownian net with killing. These determine the color genealogy by means of reduced graphs. We focus our attention on models where the voter and boundary nucleation dynamics depend only on the colors of nearest neighbor sites, for which convergence of the discrete net with killing to its continuum analog was proved in an earlier paper by the authors. We use some detailed properties of the Brownian net with killing to prove voter model perturbations convergence to its continuum counterpart. A crucial property of reduced graphs is that even in the continuum, they are finite almost surely. An important issue is how vertices of the continuum reduced graphs are strongly approximated by their discrete analogues.
The purpose of this paper is extend recent results of Bonder-Groisman and Foondun-Nualart to the stochastic wave equation. In particular, a suitable integrability condition for non-existence of global solutions is derived.
60 - Shi Jin , Lei Li 2020
The Random Batch Method proposed in our previous work [Jin et al., J. Comput. Phys., 400(1), 2020] is not only a numerical method for interacting particle systems and its mean-field limit, but also can be viewed as a model of particle system in which particles interact, at discrete time, with randomly selected mini-batch of particles. In this paper we investigate the mean-field limit of this model as the number of particles $N to infty$. Unlike the classical mean field limit for interacting particle systems where the law of large numbers plays the role and the chaos is propagated to later times, the mean field limit now does not rely on the law of large numbers and chaos is imposed at every discrete time. Despite this, we will not only justify this mean-field limit (discrete in time) but will also show that the limit, as the discrete time interval $tau to 0$, approaches to the solution of a nonlinear Fokker-Planck equation arising as the mean-field limit of the original interacting particle system in Wasserstein distance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا