Do you want to publish a course? Click here

Algebras over Cobar(coFrob)

64   0   0.0 ( 0 )
 Added by Thomas Tradler
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We show that a square zero, degree one element in W(V), the Weyl algebra on a vector space V, is equivalent to providing V with the structure of an algebra over the properad Cobar(coFrob), the properad arising from the cobar construction applied to the cofrobenius coproperad.



rate research

Read More

We show that except in several cases conjugacy classes of classical Weyl groups $W(B_n)$ and $W(D_n)$ are of type {rm D}. We prove that except in three cases Nichols algebras of irreducible Yetter-Drinfeld ({rm YD} in short )modules over the classical Weyl groups are infinite dimensional.
We show that except in several cases conjugacy classes of classical Weyl groups $W(B_n)$ and $W(D_n)$ are of type {rm D}. We prove that except in three cases Nichols algebras of irreducible Yetter-Drinfeld ({rm YD} in short )modules over the classical Weyl groups are infinite dimensional. We establish the relationship between Fomin-Kirillov algebra $mathcal E_n$ and Nichols algebra $mathfrak{B} ({mathcal O}_{{(1, 2)}} , epsilon otimes {rm sgn})$ of transposition over symmetry group by means of quiver Hopf algebras. We generalize {rm FK } algebra. The characteristic of finiteness of Nichols algebras in thirteen ways and of {rm FK } algebras ${mathcal E}_n$ in nine ways is given. All irreducible representations of finite dimensional Nichols algebras %({rm FK } algebras ${mathcal E}_n$) and a complete set of hard super- letters of Nichols algebras of finite Cartan types are found. The sufficient and necessary condition for Nichols algebra $mathfrak B(M)$ of reducible {rm YD} module $M$ over $A rtimes mathbb{S}_n$ with ${rm supp } (M) subseteq A$ to be finite dimensional is given. % Some conditions for a braided vector space to become a {rm YD} module over finite commutative group are obtained. It is shown that hard braided Lie Lyndon word, standard Lyndon word, Lyndon basis path, hard Lie Lyndon word and standard Lie Lyndon word are the same with respect to $ mathfrak B(V)$, Cartan matrix $A_c$ and $U(L^+)$, respectively, where $V$ and $L$ correspond to the same finite Cartan matrix $A_c$.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine $ADE$ type, and $mathcal{C}_{mathfrak{g}}^0$ the Hernandez-Leclerc category of finite-dimensional $U_q(mathfrak{g})$-modules. For a suitable infinite sequence $widehat{w}_0= cdots s_{i_{-1}}s_{i_0}s_{i_1} cdots$ of simple reflections, we introduce subcategories $mathcal{C}_{mathfrak{g}}^{[a,b]}$ of $mathcal{C}_{mathfrak{g}}^0$ for all $a le b in mathbb{Z}sqcup{ pm infty }$. Associated with a certain chain $mathfrak{C}$ of intervals in $[a,b]$, we construct a real simple commuting family $M(mathfrak{C})$ in $mathcal{C}_{mathfrak{g}}^{[a,b]}$, which consists of Kirillov-Reshetikhin modules. The category $mathcal{C}_{mathfrak{g}}^{[a,b]}$ provides a monoidal categorification of the cluster algebra $K(mathcal{C}_{mathfrak{g}}^{[a,b]})$, whose set of initial cluster variables is $[M(mathfrak{C})]$. In particular, this result gives an affirmative answer to the monoidal categorification conjecture on $mathcal{C}_{mathfrak{g}}^-$ by Hernandez-Leclerc since it is $mathcal{C}_{mathfrak{g}}^{[-infty,0]}$, and is also applicable to $mathcal{C}_{mathfrak{g}}^0$ since it is $mathcal{C}_{mathfrak{g}}^{[-infty,infty]}$.
The aim of this paper is to introduce and study Lie algebras and Lie groups over noncommutative rings. For any Lie algebra $gg$ sitting inside an associative algebra $A$ and any associative algebra $FF$ we introduce and study the algebra $(gg,A)(FF)$, which is the Lie subalgebra of $FF otimes A$ generated by $FF otimes gg$. In many examples $A$ is the universal enveloping algebra of $gg$. Our description of the algebra $(gg,A)(FF)$ has a striking resemblance to the commutator expansions of $FF$ used by M. Kapranov in his approach to noncommutative geometry. To each algebra $(gg, A)(FF)$ we associate a ``noncommutative algebraic group which naturally acts on $(gg,A)(FF)$ by conjugations and conclude the paper with some examples of such groups.
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over quiver Hecke algebra of type A${}_infty$. In particular, when the quantum affine algebra is of type A or B, the subcategory coincides with the monoidal category $mathcal{C}_{mathfrak{g}}^0$ introduced by Hernandez-Leclerc. As a consequence, the modules corresponding to cluster monomials are real simple modules over quantum affine algebras.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا