Do you want to publish a course? Click here

Nichols algebras over classical Weyl groups

139   0   0.0 ( 0 )
 Added by Shouchuan Zhang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We show that except in several cases conjugacy classes of classical Weyl groups $W(B_n)$ and $W(D_n)$ are of type {rm D}. We prove that except in three cases Nichols algebras of irreducible Yetter-Drinfeld ({rm YD} in short )modules over the classical Weyl groups are infinite dimensional.



rate research

Read More

We show that except in several cases conjugacy classes of classical Weyl groups $W(B_n)$ and $W(D_n)$ are of type {rm D}. We prove that except in three cases Nichols algebras of irreducible Yetter-Drinfeld ({rm YD} in short )modules over the classical Weyl groups are infinite dimensional. We establish the relationship between Fomin-Kirillov algebra $mathcal E_n$ and Nichols algebra $mathfrak{B} ({mathcal O}_{{(1, 2)}} , epsilon otimes {rm sgn})$ of transposition over symmetry group by means of quiver Hopf algebras. We generalize {rm FK } algebra. The characteristic of finiteness of Nichols algebras in thirteen ways and of {rm FK } algebras ${mathcal E}_n$ in nine ways is given. All irreducible representations of finite dimensional Nichols algebras %({rm FK } algebras ${mathcal E}_n$) and a complete set of hard super- letters of Nichols algebras of finite Cartan types are found. The sufficient and necessary condition for Nichols algebra $mathfrak B(M)$ of reducible {rm YD} module $M$ over $A rtimes mathbb{S}_n$ with ${rm supp } (M) subseteq A$ to be finite dimensional is given. % Some conditions for a braided vector space to become a {rm YD} module over finite commutative group are obtained. It is shown that hard braided Lie Lyndon word, standard Lyndon word, Lyndon basis path, hard Lie Lyndon word and standard Lie Lyndon word are the same with respect to $ mathfrak B(V)$, Cartan matrix $A_c$ and $U(L^+)$, respectively, where $V$ and $L$ correspond to the same finite Cartan matrix $A_c$.
114 - Weicai Wu 2020
It is shown that except in three cases conjugacy classes of classical Weyl groups $W(B_{n})$ and $W(D_{n})$ are of type ${rm D}$. This proves that Nichols algebras of irreducible Yetter-Drinfeld modules over the classical Weyl groups $mathbb W_{n}$ (i.e. $H_{n}rtimes mathbb{S}_{n}$) are infinite dimensional, except the class of type $(2, 3),(1^{2}, 3)$ in $mathbb S_{5}$, and $(1^{n-2}, 2)$ in $mathbb S_{n}$ for $n >5$.
We study graded right coideal subalgebras of Nichols algebras of semisimple Yetter-Drinfeld modules. Assuming that the Yetter-Drinfeld module admits all reflections and the Nichols algebra is decomposable, we construct an injective order preserving and order reflecting map between morphisms of the Weyl groupoid and graded right coideal subalgebras of the Nichols algebra. Here morphisms are ordered with respect to right Duflo order and right coideal subalgebras are ordered with respect to inclusion. If the Weyl groupoid is finite, then we prove that the Nichols algebra is decomposable and the above map is bijective. In the special case of the Borel part of quantized enveloping algebras our result implies a conjecture of Kharchenko. Key words: Hopf algebra, quantum group, root system, Weyl group
We establish the relationship among Nichols algebras, Nichols braided Lie algebras and Nichols Lie algebras. We prove two results: (i) Nichols algebra $mathfrak B(V)$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional if there does not exist any $m$-infinity element in $mathfrak B(V)$; (ii) Nichols Lie algebra $mathfrak L^-(V)$ is infinite dimensional if $ D^-$ is infinite. We give the sufficient conditions for Nichols braided Lie algebra $mathfrak L(V)$ to be a homomorphic image of a braided Lie algebra generated by $V$ with defining relations.
It is shown that if $mathfrak B(V) $ is connected Nichols algebra of diagonal type with $dim V>1$, then $dim (mathfrak L^-(V)) = infty$ $($resp. $ dim (mathfrak L(V)) = infty $$)$ $($ resp. $ dim (mathfrak B(V)) = infty $$)$ if and only if $Delta(mathfrak B(V)) $ is an arithmetic root system and the quantum numbers (i.e. the fixed parameters) of generalized Dynkin diagrams of $V$ are of finite order. Sufficient and necessary conditions for $m$-fold adjoint action in $mathfrak B(V)$ equal to zero, viz. $overline{l}_{x_{i}}^{m}[x_{j}]^ -=0$ for $x_i,~x_jin mathfrak B(V)$, are given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا