Do you want to publish a course? Click here

Multiple Nodeless Superconducting Gaps in (Ba0.6K0.4)Fe2As2 Superconductor from Angle-Resolved Photoemission Spectroscopy

316   0   0.0 ( 0 )
 Added by Lin Zhao
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the G(0,0) point exhibit different superconducting gaps. The inner Fermi surface sheet shows larger (10-12 meV) and slightly momentum-dependent gap while the outer one has smaller (7-8 meV) and nearly isotropic gap. The lack of gap node in both Fermi surface sheets favours s-wave superconducting gap symmetry. Superconducting gap opening is also observed at the M(pi,pi) point. The two Fermi surface spots near the M point are gapped below Tc but the gap persists above Tc. The rich and detailed superconducting gap information will provide key insights and constraints in understanding pairing mechanism in the iron-based superconductors.



rate research

Read More

184 - K. Nakayama , T. Sato , P. Richard 2010
We have performed angle-resolved photoemission spectroscopy on the overdoped Ba$_{0.3}$K$_{0.7}$Fe$_2$As$_2$ superconductor ($T_c$ = 22 K). We demonstrate that the superconducting (SC) gap on each Fermi surface (FS) is nearly isotropic whereas the gap value varies from 4.4 to 7.9 meV on different FSs. By comparing with under- and optimally-doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$, we find that the gap value on each FS nearly scales with $T_c$ over a wide doping range (0.25 $textyen leq$ $x$ $textyen leq$ 0.7). Although the FS volume and the SC gap magnitude are strongly doping dependent, the multiple nodeless gaps can be commonly fitted by a single gap function assuming pairing up to the second-nearest-neighbor, suggesting the universality of the short-range pairing states with the $s_{yenpm}$-wave symmetry.
We carried out high resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of K_0.68Fe_1.79Se_2 (T_c=32 K) and (Tl_0.45K_0.34)Fe_1.84Se_2 (T_c=28 K) superconductors. In addition to the electron-like Fermi surface near M(pi,pi), two electron-like Fermi pockets are revealed around the zone center Gamma(0,0) in K0.68Fe1.79Se_2. This observation makes the Fermi surface topology of K_0.68Fe_1.79Se_2 consistent with that of (Tl,Rb)_xFe_{2-y}Se_2 and (Tl,K)_xFe_{2-y}Se_2 compounds. A nearly isotropic superconducting gap (Delta) is observed along the electron-like Fermi pocket near the M point in K_0.68Fe_1.79Se_2 (Deltasim 9 meV) and (Tl_0.45K_0.34)Fe_1.84Se_2 (Deltasim 8 meV). The establishment of a universal picture on the Fermi surface topology and superconducting gap in the A_xFe_2-ySe_2 (A=K, Tl, Cs, Rb and etc.) superconductors will provide important information in understanding the superconductivity mechanism of the iron-based superconductors.
195 - K. Nakayama , T. Sato , P. Richard 2009
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets including a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable ($Delta$ $sim$ 11 meV) to that of the inner electron and hole pockets ($sim$12 meV), although it is substantially larger than that of the outer hole pocket ($sim$6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with $Delta$($k$) = $Delta$$_0$cos$k_x$cos$k_y$ formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.
High resolution angle-resolved photoemission measurements have been carried out on (Sr,K)Fe$_2$As$_2$ superconductor (Tc=21 K). Three hole-like Fermi surface sheets are clearly resolved for the first time around the Gamma point. The overall electronic structure shows significant difference from the band structure calculations. Qualitative agreement between the measured and calculated band structure is realized by assuming a chemical potential shift of -0.2 eV. The obvious band renormalization suggests the importance of electron correlation in understanding the electronic structure of the Fe-based compounds.
We have performed high resolution angle-resolved photoemission measurements on superconducting electron-doped NaFe$_{0.95}$Co$_{0.05}$As ($T_{c}sim$18 K). We observed a hole-like Fermi surface around the zone center and two electron-like Fermi surfaces around the M point which can be connected by the $Q=(pi, pi)$ wavevector, suggesting that scattering over the near-nested Fermi surfaces is important to the superconductivity of this 111 pnicitide. Nearly isotropic superconducting gaps with sharp coherent peaks are observed below $T_c$ on all three Fermi surfaces. Upon increasing temperature through $T_c$, the gap size shows little change while the coherence vanishes. Large ratios of $2Delta/k_{B}T_{c}sim8$ are observed for all the bands, indicating a strong coupling in this system. These results are not expected from a classical phonon-mediated pairing mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا