For a fully irreducible automorphism phi of the free group F_k we compute the asymptotics of the intersection number n mapsto i(T,Tphi^n) for trees T,T in Outer space. We also obtain qualitative information about the geometry of the Guirardel core for the trees T and Tphi^n for n large.
The mapping torus of an endomorphism Phi of a group G is the HNN-extension G*_G with bonding maps the identity and Phi. We show that a mapping torus of an injective free group endomorphism has the property that its finitely generated subgroups are finitely presented and, moreover, these subgroups are of finite type.
We study the loxodromic elements for the action of $Out(F_n)$ on the free splitting complex of the rank $n$ free group $F_n$. We prove that each outer automorphism is either loxodromic, or has bounded orbits without any periodic point, or has a periodic point; and we prove that all three possibilities can occur. We also prove that two loxodromic elements are either co-axial or independent, meaning that their attracting/repelling fixed point pairs on the Gromov boundary of the free splitting complex are either equal or disjoint as sets. Each of the alternatives in these results is also characterized in terms of the attracting/repelling lamination pairs of an outer automorphism. As an application, each attracting lamination determines its corresponding repelling lamination independent of the outer automorphism. As part of this study we describe the structure of the subgroup of $Out(F_n)$ that stabilizes the fixed point pair of a given loxodromic outer automorphism, and we give examples which show that this subgroup need not be virtually cyclic. As an application, the action of $Out(F_n)$ on the free splitting complex is not acylindrical, and its loxodromic elements do not all satisfy the WPD property of Bestvina and Fujiwara.
It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin denfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compact dessins. Moreover, we show that any tame action of a countable group is so realizable.
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structural aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
Quandle is an algebraic system with one binary operation, but it is quite different from a group. Quandle has its origin in the knot theory and good relationships with the theory of symmetric spaces, so it is well-studied from points of view of both areas. In the present paper, we investigate a special kind of quandles, called generalized Alexander quandles $Q(G,psi)$, which is defined by a group $G$ together with its group automorphism $psi$. We develop the quandle invariants for generalized Alexander quandles. As a result, we prove that there is a one-to-one correspondence between generalized Alexander quandles arising from symmetric groups $Sf_n$ and the conjugacy classes of $Sf_n$ for $3 leq n leq 30$ with $n eq 6,15$, and the case $n=6$ is also discussed.