Do you want to publish a course? Click here

Radio continuum observations of the candidate supermassive black hole in the dwarf elliptical VCC128

169   0   0.0 ( 0 )
 Added by Pieter Buyle
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The presence of black holes (BHs) at the centers of dwarf elliptical galaxies (dEs) has been argued both theoretically and observationally. Using archival HST/WFPC2 data, we found the Virgo cluster dwarf elliptical galaxy VCC128 to harbor a binary nucleus, a feature that is usually interpreted as the observable signature of a stellar disk orbiting a central massive black hole. Debattista et al. 2006 estimated its mass M sim 6 10^6 - 5 10^7 Msun. One of the most robust means of verifying the existence of a BH is radio continuum and/or X-ray emission, however because of the deficiency of gas in dEs, radio continuum emission forms the best option here. We have tried to detect the X-band radio emission coming from the putative black hole in VCC128 when it accretes gas from the surrounding ISM. While we made a positive 4 sigma detection of a point source 4.63 south-west of the binary nucleus, no statistically significant evidence for emission associated with the nuclei themselves was detected. This implies either that VCC128 has no massive central black hole, which makes the nature of the binary nucleus hard to explain, or, if it has a central black hole, that the physical conditions of the ISM (predominantly its density and temperature) and/or of the surrounding accretion disk do not allow for efficient gas accretion onto the black hole, making the quiescent black hole very hard to detect at radio wavelengths.



rate research

Read More

67 - X. Mazzalay 2016
We obtained adaptive-optics assisted SINFONI observations of the central regions of the giant elliptical galaxy NGC5419 with a spatial resolution of 0.2 arcsec ($approx 55$ pc). NGC5419 has a large depleted stellar core with a radius of 1.58 arcsec (430 pc). HST and SINFONI images show a point source located at the galaxys photocentre, which is likely associated with the low-luminosity AGN previously detected in NGC5419. Both the HST and SINFONI images also show a second nucleus, off-centred by 0.25 arcsec ($approx 70$ pc). Outside of the central double nucleus, we measure an almost constant velocity dispersion of $sigma sim 350$ km/s. In the region where the double nucleus is located, the dispersion rises steeply to a peak value of $sim 420$ km/s. In addition to the SINFONI data, we also obtained stellar kinematics at larger radii from the South African Large Telescope. While NGC5419 shows low rotation ($v < 50$ km/s), the central regions (inside $sim 4 , r_b$) clearly rotate in the opposite direction to the galaxys outer parts. We use orbit-based dynamical models to measure the black hole mass of NGC5419 from the kinematical data outside of the double nuclear structure. The models imply M$_{rm BH}=7.2^{+2.7}_{-1.9} times 10^9$ M$_{odot}$. The enhanced velocity dispersion in the region of the double nucleus suggests that NGC5419 possibly hosts two supermassive black holes at its centre, separated by only $approx 70$ pc. Yet our measured M$_{rm BH}$ is consistent with the black hole mass expected from the size of the galaxys depleted stellar core. This suggests, that systematic uncertainties in M$_{rm BH}$ related to the secondary nucleus are small.
Based on a high resolution cosmological n-body simulation, we track the hierarchical growth of black holes in galaxy clusters from z=20 to z=0. We present a census of black holes as function of redshift and will determine their mass assembly history under a variety of assumptions regarding the importance of gas accretion in black hole growth, from early supercritical Eddington accretion to gas-poor hierarchical assembly. Following a galaxy merger, black holes are expected to form, inspiral and merge after strongly radiating energy via gravitational waves. For each binary black hole inspiral and merger, we determine the expected gravitational wave signal for the Laser Interferometer Space Antenna (LISA), and calculate the LISA event rate as a function of time. We will calculate the black hole mass assembly history for several black hole growth scenerios, so that we can explore tests to characterize each model observationally. In particular, we will study how well LISA observations will be able to distinguish between these very different assembly scenarios.
138 - Anil Seth 2014
Ultracompact dwarf galaxies (UCDs) are among the densest stellar systems in the universe. These systems have masses up to 200 million solar masses, but half light radii of just 3-50 parsecs. Dynamical mass estimates show that many UCDs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates are due to the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we present the detection of a supermassive black hole in a massive UCD. Adaptive optics kinematic data of M60-UCD1 show a central velocity dispersion peak above 100 km/s and modest rotation. Dynamical modeling of these data reveals the presence of a supermassive black hole with mass of 21 million solar masses. This is 15% of the objects total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1s stellar mass is consistent with its luminosity, implying many other UCDs may also host supermassive black holes. This suggests a substantial population of previously unnoticed supermassive black holes.
205 - Todd A. Boroson 2009
We identify SDSS J153636.22+044127.0, a QSO discovered in the Sloan Digital Sky Survey, as a promising candidate for a binary black hole system. This QSO has two broad-line emission systems separated by 3500 km/sec. The redder system at z=0.3889 also has a typical set of narrow forbidden lines. The bluer system (z=0.3727) shows only broad Balmer lines and UV Fe II emission, making it highly unusual in its lack of narrow lines. A third system, which includes only unresolved absorption lines, is seen at a redshift, z=0.3878, intermediate between the two emission-line systems. While the observational signatures of binary nuclear black holes remain unclear, J1536+0441 is unique among all QSOs known in having two broad-line regions, indicative of two separate black holes presently accreting gas. The interpretation of this as a bound binary system of two black holes having masses of 10^8.9 and 10^7.3 solar masses, yields a separation of ~ 0.1 parsec and an orbital period of ~100 years. The separation implies that the two black holes are orbiting within a single narrow-line region, consistent with the characteristics of the spectrum. This object was identified as an extreme outlier of a Karhunen-Loeve Transform of 17,500 z < 0.7 QSO spectra from the SDSS. The probability of the spectrum resulting from a chance superposition of two QSOs with similar redshifts is estimated at 2X10^-7, leading to the expectation of 0.003 such objects in the sample studied; however, even in this case, the spectrum of the lower redshift QSO remains highly unusual.
320 - Sheperd Doeleman 2008
The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation (ref 1). Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun (refs. 2,3). A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A* where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering (refs. 4-7). Here we report observations at a wavelength of 1.3 mm that set a size of 37 (+16, -10; 3-sigma) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of SgrA* emission may not be not centred on the black hole, but arises in the surrounding accretion flow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا