Do you want to publish a course? Click here

LISA Observations of Supermassive Black Hole Growth

49   0   0.0 ( 0 )
 Added by Miroslav Micic Mr
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on a high resolution cosmological n-body simulation, we track the hierarchical growth of black holes in galaxy clusters from z=20 to z=0. We present a census of black holes as function of redshift and will determine their mass assembly history under a variety of assumptions regarding the importance of gas accretion in black hole growth, from early supercritical Eddington accretion to gas-poor hierarchical assembly. Following a galaxy merger, black holes are expected to form, inspiral and merge after strongly radiating energy via gravitational waves. For each binary black hole inspiral and merger, we determine the expected gravitational wave signal for the Laser Interferometer Space Antenna (LISA), and calculate the LISA event rate as a function of time. We will calculate the black hole mass assembly history for several black hole growth scenerios, so that we can explore tests to characterize each model observationally. In particular, we will study how well LISA observations will be able to distinguish between these very different assembly scenarios.



rate research

Read More

125 - J. W. Moffat 2020
The formation, accretion and growth of supermassive black holes in the early universe are investigated. The accretion rate ${dot M}$ is calculated using the Bondi accretion rate onto black holes. Starting with initial seed black holes with masses $M_{rm BH}sim 10^2-10^3M_{odot}$, the Bondi accretion rate can evolve into a supermassive black hole with masses $M_{rm BH}sim 10^9-10^{10}M_{odot}$ and with a young quasar lifetime $sim 10^5-10^6$ years by super-Eddington accretion.
Stellar-mass black hole binaries (BHBs) near supermassive black holes (SMBH) in galactic nuclei undergo eccentricity oscillations due to gravitational perturbations from the SMBH. Previous works have shown that this channel can contribute to the overall BHB merger rate detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo Interferometer. Significantly, the SMBH gravitational perturbations on the binarys orbit may produce eccentric BHBs which are expected to be visible using the upcoming Laser Interferometer Space Antenna (LISA) for a large fraction of their lifetime before they merge in the LIGO/Virgo band. For a proof-of-concept, we show that the eccentricity oscillations of these binaries can be detected with LISA for BHBs in the local universe up to a few Mpcs, with observation periods shorter than the mission lifetime, thereby disentangling this merger channel from others. The approach presented here is straightforward to apply to a wide variety of compact object binaries with a tertiary companion.
Gravitational lensing of gravitational waves (GWs) is a powerful probe of the matter distribution in the universe. Here we study the lensing effect induced by dark matter (DM) halos on the GW signals from merging massive black holes, and we revisit the possibility of detection using the Laser Interferometer Space Antenna (LISA). In particular, we include the halos in the low-mass range of $10^5-10^9, M_odot$ since they are the most numerous according to the cold DM model. In addition, we employ the matched-filtering technique to search for weak diffraction signatures when the MBHBs have large impact parameters ($ysim10^2$). We find that about $(20-40)%$ of the MBHB in the mass range of $10^5-10^6M_odot$ and the redshift range of $4-10$ should show detectable wave-optics effects. The uncertainty comes mainly from the mass function of DM halos. Not detecting any signal during the LISA mission would imply that DM halos are significantly more massive than $10^8,M_odot$.
We study parameter estimation of supermassive black holes in the range $10^5-10^8Ms$ by LISA using the inspiral full post-Newtonian gravitational waveforms, and we compare the results with those arising from the commonly used restricted post-Newtonian approximation. The analysis shows that for observations of the last year before merger, the inclusion of the higher harmonics clearly improves the parameter estimation. We pay special attention to the source location errors and we study the improvement on the percentage of sources for which we could potentially identify electromagnetic counterparts. We also show how the additional harmonics can help to mitigate the impact of losing laser links during the mission.
Gravitational waves from the inspiral and coalescence of supermassive black-hole (SMBH) binaries with masses ~10^6 Msun are likely to be among the strongest sources for the Laser Interferometer Space Antenna (LISA). We describe a three-stage data-analysis pipeline designed to search for and measure the parameters of SMBH binaries in LISA data. The first stage uses a time-frequency track-search method to search for inspiral signals and provide a coarse estimate of the black-hole masses m_1, m_2 and of the coalescence time of the binary t_c. The second stage uses a sequence of matched-filter template banks, seeded by the first stage, to improve the measurement accuracy of the masses and coalescence time. Finally, a Markov Chain Monte Carlo search is used to estimate all nine physical parameters of the binary. Using results from the second stage substantially shortens the Markov Chain burn-in time and allows us to determine the number of SMBH-binary signals in the data before starting parameter estimation. We demonstrate our analysis pipeline using simulated data from the first LISA Mock Data Challenge. We discuss our plan for improving this pipeline and the challenges that will be faced in real LISA data analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا