No Arabic abstract
We have studied the nuclear magnetic resonance (NMR) of 51V nuclei in the superconductor/ferromagnet thin film heterostructures Ni/V/Ni and Pd{1-x}Fe{x}/V/Pd{1-x}Fe{x} in the normaland superconducting state. Whereas the position and shape of the NMR line in the normal state for the trilayers is identical to that observed in a single V-layer, in the superconducting state the line shape definitely changes, developing a systematic distortion of the high-field wing of the resonance line. We consider this as the first experimental evidence for the penetration of ferromagnetism into the superconducting layer, a phenomenon which has been theoretically predicted recently and dubbed the inverse proximity effect.
Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the inverse proximity effect, in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the lights optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al..
The magnetization in a superconductor induced due to the inverse proximity effect is investigated in hybrid bilayers containing a superconductor and a ferromagnetic insulator or a strongly spin-polarized ferromagnetic metal. The study is performed within a quasiclassical Green function framework, wherein Usadel equations are solved with boundary conditions appropriate for strongly spin-polarized ferromagnetic materials. A comparison with recent experimental data is presented. The singlet to triplet conversion of the superconducting correlations as a result of the proximity effect with a ferromagnet is studied.
Considerable evidence for proximity-induced triplet superconductivity on the ferromagnetic side of a superconductor-ferromagnet (S-F) interface now exists; however, the corresponding effect on the superconductor side has hardly been addressed. We have performed scanning tunneling spectroscopy measurements on NbN superconducting thin films proximity coupled to the half-metallic ferromagnet La2/3Ca1/3MnO3 (LCMO) as a function of magnetic field. We have found that at zero and low applied magnetic fields the tunneling spectra on NbN typically show an anomalous gap structure with suppressed coherence peaks and, in some cases, a zero-bias conductance peak. As the field increases to the magnetic saturation of LCMO where the magnetization is homogeneous, the spectra become more BCS-like and the critical temperature of the NbN increases, implying a reduced proximity effect. Our results therefore suggest that triplet-pairing correlations are also induced in the S side of an S-F bilayer.
$mathrm{YBa_2Cu_3O_7/La_{2/3}Ca_{1/3}MnO_3}$ superconducting/ferromagnetic (SC/FM) multilayers have been studied by neutron reflectometry. Evidence for a characteristic difference between the structural and magnetic depth profiles is obtained from the occurrence of a structurally forbidden Bragg peak in the FM state. The comparison with simulated reflectivity curves allows us to identify two possible magnetization profiles: a sizable magnetic moment within the SC layer antiparallel to the one in the FM layer (inverse proximity effect), or a ``dead region in the FM layer with zero net magnetic moment. The former scenario is supported by an anomalous SC-induced enhancement of the off-specular reflection, which testifies to a strong mutual interaction of SC and FM order parameters.
We study the influence of the configuration of the majority and minority spin subbands of electron spectra on the properties of atomic-scaled superconductor-ferromagnet S-F-S and F-S-F hybrid structures. At low temperatures, the S/F/S junction is either a 0 or junction depending on the energy shift between S and F materials and the anisotropy of the Fermi surfaces. We found that the spin switch effect in F/S/F system can be reversed if the minority spin electron spectra in F metal is of the hole-like type.