Do you want to publish a course? Click here

$mu$SR studies of the frustrated quasi-2d square-lattice spin system Cu(Cl,Br)La(Nb,Ta)$_{2}$O$_{7}$: evolution from spin-gap to antiferromagnetic state

160   0   0.0 ( 0 )
 Added by Yasutomo J. Uemura
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report muon spin relaxation ($mu$SR) and magnetic susceptibility measurements on Cu(Cl,Br)La(Nb,Ta)$_{2}$O$_{7}$, which demonstrate: (a) the absence of static magnetism in (CuCl)LaNb$_{2}$O$_{7}$ down to 15 mK confirming a spin-gapped ground state; (b) phase separation between partial volumes with a spin-gap and static magnetism in (CuCl)La(Nb,Ta)$_{2}$O$_{7}$; (c) history-dependent magnetization in the (Nb,Ta) and (Cl,Br) substitution systems; (d) a uniform long-range collinear antiferromagnetic state in (CuBr)LaNb$_{2}$O$_{7}$; and (e) a decrease of Neel temperature with decreasing Br concentration $x$ in Cu(Cl$_{1-x}$Br$_{x}$)LaNb$_{2}$O$_{7}$ with no change in the ordered Cu moment size for $0.33 leq x leq 1$. Together with several other $mu$SR studies of quantum phase transitions in geometrically-frustrated spin systems, the present results reveal that the evolution from a spin-gap to a magnetically ordered state is often associated with phase separation and/or a first order phase transition.



rate research

Read More

The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order and possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To understand its novel properties, we study the ground state of a highly frustrated spin-$1$ system with bilinear-biquadratic interactions using unbiased large-scale density matrix renormalization group. Remarkably, with increasing biquadratic interactions, we find a paramagnetic phase between Neel and stripe magnetic ordered phases. We identify this phase as a candidate of nematic quantum spin liquid by the compelling evidences, including vanished spin and quadrupolar orders, absence of lattice translational symmetry breaking, and a persistent non-zero lattice nematic order in the thermodynamic limit. The established quantum phase diagram natually explains the observations of enhanced spin fluctuations of FeSe in neutron scattering measurement and the phase transition with increasing pressure. This identified paramagnetic phase provides a new possibility to understand the novel properties of FeSe.
Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long range magnetic order in the family of pyrochlore iridates, R$_{2}$Ir$_{2}$O$_{7}$ (R = lanthanide)$^{1}$. As a consequence, Pr$_{2}$Ir$_{2}$O$_{7}$ lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits a diverse array of complex phenomena including Kondo effect, biquadratic band structure, metallic spin-liquid (MSL), and anomalous Hall effect$^{2-5}$. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning K-means clustering analysis, density functional theory, and theoretical modeling, we probe the local electronic states in single crystal of Pr$_{2}$Ir$_{2}$O$_{7}$ and discover an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. Remarkably, the spatial nanoscale patterns display a correlation-driven fractal geometry with power-law behavior extended over two and a half decades, consistent with being in proximity to a critical point. Our discovery reveals a new nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.
We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be mapped to a spin-1 spatially anisotropic triangular lattice. The magnetization curve exhibits gapped behavior indicative of a dominant one-dimensional (1D) AF correlation. In the field-induced gapless phase, the specific heat and magnetic susceptibility show a phase transition to an ordered state with 2D characteristics. These results indicate that the spin-1 Haldane state is extended to the 2D system. We demonstrate that the gapped ground state observed in the present spin-1/2 frustrated square lattice originates from the one-dimensionalization caused by frustration.
Electronic structure has been studied in lightly electron doped correlated spin-orbit insulator Sr$_2$IrO$_4$ by angle-resolved photoelectron spectroscopy. We have observed coexistence of the lower Hubbard band and the in-gap band, the momentum dependence of the latter traces that of the band calculations without on-site Coulomb repulsion. The in-gap state remained anisotropically gapped in all observed momentum area, forming a remnant Fermi surface state, evolving towards the Fermi energy by carrier doping. These experimental results show a striking similarity with those observed in deeply underdoped cuprates, suggesting the common nature of the nodal liquid states observed in both compounds.
We report detailed systematic measurements of the spatial variation in electronic states in the high T{c} superconductor La{2-x}Sr{x}CuO{4} (0.04<= x <= 0.16) using {63}Cu NQR for {63}Cu isotope enriched poly-crystalline samples. We demonstrate that the spatial variation in local hole concentration {63}x{local} given by {63}x{local} = x +/- {63}Dx{local}, where x is the nominal hole concentration and {63}Dx{local} is defined as the amplitude (or extent) of the spatial variation, is reflected in the frequency dependence of the spin-lattice relaxation rate {63}1/T{1} across the inhomogeneous linebroadening of the {63}Cu NQR spectrum. By using high precision measurements of the temperature dependence of {63}1/T_{1} at various positions across the {63}Cu NQR lineshape, we demonstrate that {63}Dx{local} increases below 500 - 600 K and reaches values as large as {63}Dx{local} / x ~ 0.5 in the temperature region > 150 K. By incorporating the random positioning of {+2}Sr donor ions in the lattice in a novel approach, a lower bound to the length scale of the spatial variation {63}R{patch} is deduced by fitting the entire {63}Cu NQR spectrum (including the ``B -line) using a patch-by-patch distribution of the spatial variation {63}x{local} with the patch radius {63}R_{patch} > 3.0 nm as the only free parameter. A corresponding upper bound to the amplitude of the spatial variation {63}Dx{patch} (~ 1/{63}R_{patch}) is deduced within the model, and consistent results are found with {63}Dx{local} . We also deduce the onset temperature T{Q} (> 400 K) for local orthorhombic lattice distortions which, in the region x > 0.04, is found to be larger than the onset temperature of long range structural order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا