Do you want to publish a course? Click here

Gapped ground state in a spin-1/2 frustrated square lattice

192   0   0.0 ( 0 )
 Added by Hironori Yamaguchi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model compound with a spin-1/2 frustrated square lattice, in which three ferromagnetic (F) interactions and one antiferromagnetic (AF) compet. Considering the effective spin-1 formed by the dominant F dimer, this square lattice can be mapped to a spin-1 spatially anisotropic triangular lattice. The magnetization curve exhibits gapped behavior indicative of a dominant one-dimensional (1D) AF correlation. In the field-induced gapless phase, the specific heat and magnetic susceptibility show a phase transition to an ordered state with 2D characteristics. These results indicate that the spin-1 Haldane state is extended to the 2D system. We demonstrate that the gapped ground state observed in the present spin-1/2 frustrated square lattice originates from the one-dimensionalization caused by frustration.

rate research

Read More

We report a single-crystal study on the magnetism of the rare-earth compound PrTiNbO$_6$ that experimentally realizes the zigzag pseudospin-$frac{1}{2}$ quantum antiferromagnetic chain model. Random crystal electric field caused by the site mixing between non-magnetic Ti$^{4+}$ and Nb$^{5+}$, results in the non-Kramers ground state quasi-doublet of Pr$^{3+}$ with the effective pseudospin-$frac{1}{2}$ Ising moment. Despite the antiferromagnetic intersite coupling of about 4 K, no magnetic freezing is detected down to 0.1 K, whilst the system approaches its ground state with almost zero residual spin entropy. At low temperatures, a sizable gap of about 1 K is observed in zero field. We ascribe this gap to off-diagonal anisotropy terms in the pseudospin Hamiltonian, and argue that rare-earth oxides open an interesting venue for studying magnetism of quantum spin chains.
A quantum spin liquid state has long been predicted to arise in spin-1/2 Heisenberg square-lattice antiferromagnets at the boundary region between Neel (nearest-neighbor interaction dominates) and columnar (next-nearest-neighbor dominates) antiferromagnetic order. However, there are no known compounds in this region. Here we use $d^{10}$-$d^0$ cation mixing to tune the magnetic interactions on the square lattice while simultaneously introducing disorder. We find spin-liquid-like behavior in the double perovskite Sr$_2$Cu(Te$_{0.5}$W$_{0.5}$)O$_6$, where the isostructural end phases Sr$_2$CuTeO$_6$ and Sr$_2$CuWO$_6$ are Neel and columnar type antiferromagnets, respectively. We show that magnetism in Sr$_2$Cu(Te$_{0.5}$W$_{0.5}$)O$_6$ is entirely dynamic down to 19 mK. Additionally, we observe at low temperatures for Sr$_2$Cu(Te$_{0.5}$W$_{0.5}$)O$_6$, similar to several spin liquid candidates, a plateau in muon spin relaxation rate and a strong $T$-linear dependence in specific heat. Our observations for Sr$_2$Cu(Te$_{0.5}$W$_{0.5}$)O$_6$ highlight the role of disorder in addition to magnetic frustration in spin liquid physics.
We present a model compound with a spin-1/2 spatially anisotropic frustrated square lattice, in which three antiferromagnetic interactions and one ferromagnetic interaction are competing. We observe an unconventional gradual increase in the low-temperature magnetization curve reminiscent of the quantum critical behavior between gapped and gapless phases. In addition, the specific heat and electron spin resonance signals indicate one-dimensional characteristics. These results demonstrate quantum critical behavior associated with one dimensionalization caused by frustrated interactions in the spin-1/2 spatially anisotropic square lattice.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak single-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا