Do you want to publish a course? Click here

Fidelity, purity and entanglement of two-mode spatially Gaussian-entangled light fields in Turbulence Atmosphere

376   0   0.0 ( 0 )
 Added by Li-Gang Wang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the propagation of two-mode spatially Gaussian-entangled quantum light fields passing through the turbulence atmosphere. From the propagation formula of the two-mode wave function in the position representation, we have derived the analytical expressions for the fidelity, purity and logarithmic negativity (entanglement) of the resulting quantum state after the long-distance atmospheric transportation. Based on the derived formulae, the effects of the atmospheric turbulences on the evolutions of quantum properties of the resulting two-mode quantum state are discussed in detail under different input parameters of the initial two-mode quantum state. The results show that the maximal distributing distance of quantum entanglement is strongly dependent on the atmospheric conditions: when the atmospheric turbulence becomes stronger and stronger, the maximal distance becomes shorter and shorter, and both the fidelity and purity decrease quicker and quicker as functions of propagating distances. Under a certain atmospheric condition, with the increasing of the input entanglement of the initial two-mode spatially Gaussian-entangled quantum state, the maximal distributing distance for preserving the entanglement gradually increases and always has a saturated (upper) limitation, and both the evolutions of the fidelity and purity are affected by the input parameters of the initial two-mode quantum state, Finally the optimal parameters of the input two-mode quantum state with the fixed input entanglement are discussed in order to obtain the optimal transfer distribution of the quantum entanglement over a long distance under a certain atmosphere. Our theoretical results are very helpful for building the distribution of the quantum entanglement via free-space atmosphere link.



rate research

Read More

A Gaussian degree of entanglement for a symmetric two-mode Gaussian state can be defined as its distance to the set of all separable two-mode Gaussian states. The principal property that enables us to evaluate both Bures distance and relative entropy between symmetric two-mode Gaussian states is the diagonalization of their covariance matrices under the same beam-splitter transformation. The multiplicativity property of the Uhlmann fidelity and the additivity of the relative entropy allow one to finally deal with a single-mode optimization problem in both cases. We find that only the Bures-distance Gaussian entanglement is consistent with the exact entanglement of formation.
We analyze the stabilizability of entangled two-mode Gaussian states in three benchmark dissipative models: local damping, dissipators engineered to preserve two-mode squeezed states, and cascaded oscillators. In the first two models, we determine principal upper bounds on the stabilizable entanglement, while in the last model, arbitrary amounts of entanglement can be stabilized. All three models exhibit a tradeoff between state entanglement and purity in the entanglement maximizing limit. Our results are derived from the Hamiltonian-independent stabilizability conditions for Gaussian systems. Here, we sharpen these conditions with respect to their applicability.
We analytically exploit the two-mode Gaussian states nonunitary dynamics. We show that in the zero temperature limit, entanglement sudden death (ESD) will always occur for symmetric states (where initial single mode compression is $z_0$) provided the two mode squeezing $r_0$ satisfies $0 < r_0 < 1/2 log (cosh (2 z_0)).$ We also give the analytical expressions for the time of ESD. Finally, we show the relation between the single modes initial impurities and the initial entanglement, where we exhibit that the later is suppressed by the former.
We provide a rigorous treatment of the entanglement properties of two-mode Gaussian states in atmospheric channels by deriving and analyzing the input-output relations for the corresponding entanglement test. A key feature of such turbulent channels is a non-trivial dependence of the transmitted continuous-variable entanglement on coherent displacements of the quantum state of the input field. Remarkably, this allows one to optimize the entanglement certification by modifying local coherent amplitudes using a finite, but optimal amount of squeezing. In addition, we propose a protocol which, in principle, renders it possible to transfer the Gaussian entanglement through any turbulent channel over arbitrary distances. Therefore, our approach provides the theoretical foundation for advanced applications of Gaussian entanglement in free-space quantum communication.
Research on spatially-structured light has seen an explosion in activity over the past decades, powered by technological advances for generating such light, and driven by questions of fundamental science as well as engineering applications. In this review we highlight work on the interaction of vector light fields with atoms, and matter in general. This vibrant research area explores the full potential of light, with clear benefits for classical as well as quantum applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا