Do you want to publish a course? Click here

Image charge screening: a new approach to enhance magnetic ordering temperatures

554   0   0.0 ( 0 )
 Added by Hua Wu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have tested the concept of image charge screening as a new approach to enhance magnetic ordering temperatures and superexchange interactions in ultra thin films. Using a 3 monolayer NiO(100) film grown on Ag(100) and an identically thin film on MgO(100) as model systems, we observed that the Neel temperature of the NiO film on the highly polarizable metal substrate is 390 K while that of the film on the poorly polarizable insulator substrate is below 40 K. This demonstrates that screening by highly polarizable media may point to a practical way towards designing strongly correlated oxide nanostructures with greatly improved magnetic properties.



rate research

Read More

Frustrated magnets are one class of fascinating materials that host many intriguing phases such as spin ice, spin liquid and complex long-range magnetic orderings at low temperatures. In this work we use first-principles calculations to find that in a wide range of magnetically frustrated oxides, at zero temperature a number of non-collinear magnetic orderings are more stable than the type-I collinear ordering that is observed at finite temperatures. The emergence of non-collinear orderings in those complex oxides is due to higher-order exchange interactions that originate from second-row and third-row transition metal elements. This implies a collinear-to-noncollinear spin transition at sufficiently low temperatures in those frustrated complex oxides. Furthermore, we find that in a particular oxide Ba$_2$YOsO$_6$, experimentally feasible uniaxial strain can tune the material between two different non-collinear magnetic orderings. Our work predicts new non-collinear magnetic orderings in frustrated complex oxides at very low temperatures and provides a mechanical route to tuning complex non-collinear magnetic orderings in those materials.
Trirutile-type LiFe$_2$F$_6$ is a charge-ordered material with Fe$^{2+}$/Fe$^{3+}$ configuration. Here its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe$_2$F$_6$ can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effect and desirable function.
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based full ab initio description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Greens function formalism. Our procedure is demonstrated for a dithiolethine molecule between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.
Compositionally tunable vanadium oxyhydrides Sr2VO4-xHx (x = 0 - 1) without considerable anion vacancy were synthesized by high-pressure solid state reaction. The crystal structures and their properties were characterized by powder neutron diffraction, synchrotron X-ray diffraction, thermal desorption spectroscopy, and first-principles density functional theory (DFT) calculations. The hydrogen anions selectively replaced equatorial oxygen sites in the VO6 layers via statistical substitution of hydrogen in the low x region (x < 0.2). A new orthorhombic phase (Immm) with an almost entirely hydrogen-ordered structure formed from the K2NiF4-type tetragonal phase with x > 0.7. Based on the DFT calculations, the degree of oxygen/hydrogen anion ordering is strongly correlated with the bonding interaction between vanadium and the ligands.
We report the magnetic structure of room-temperature-stable, monoclinic Mn$_3$As$_2$ at 3 K and 250 K using neutron powder diffraction measurements. From magnetometry data, the Curie temperature of Mn$_3$As$_2$ was confirmed to be around 270 K. Calorimetry analysis showed the presence of another transition at 225 K. At 270 K, Mn$_3$As$_2$ undergoes a $k = 0$ ferrimagnetic ordering in the magnetic space group $C2/m$ (#12.58) with Mn moments pointing along $b$. Below 225 K, there is a canting of Mn moments in the $ac$ plane which produces a multi-$k$ non-collinear magnetic structure in space group $C2/c$ (#15.85). The components of Mn moments along $b$ follow $k=0$ ordering and the components along $a$ and $c$ have $k = [0 0 frac{1}{2}]$ propagation vector. The change in the magnetic ground state with temperature provides a deeper insight into the factors that govern magnetic ordering in Mn-As compounds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا