Do you want to publish a course? Click here

Ferroelectric Ferrimagnetic LiFe$_2$F$_6$: Charge Ordering Mediated Magnetoelectricity

197   0   0.0 ( 0 )
 Added by Shuai Dong
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Trirutile-type LiFe$_2$F$_6$ is a charge-ordered material with Fe$^{2+}$/Fe$^{3+}$ configuration. Here its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe$_2$F$_6$ can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effect and desirable function.



rate research

Read More

We report the magnetic structure of room-temperature-stable, monoclinic Mn$_3$As$_2$ at 3 K and 250 K using neutron powder diffraction measurements. From magnetometry data, the Curie temperature of Mn$_3$As$_2$ was confirmed to be around 270 K. Calorimetry analysis showed the presence of another transition at 225 K. At 270 K, Mn$_3$As$_2$ undergoes a $k = 0$ ferrimagnetic ordering in the magnetic space group $C2/m$ (#12.58) with Mn moments pointing along $b$. Below 225 K, there is a canting of Mn moments in the $ac$ plane which produces a multi-$k$ non-collinear magnetic structure in space group $C2/c$ (#15.85). The components of Mn moments along $b$ follow $k=0$ ordering and the components along $a$ and $c$ have $k = [0 0 frac{1}{2}]$ propagation vector. The change in the magnetic ground state with temperature provides a deeper insight into the factors that govern magnetic ordering in Mn-As compounds.
The electronic and magnetic properties of clinopyroxene CaMnGe$_2$O$_6$ were studied using density function calculations within the GGA+U approximation. It is shown that anomalous ferromagnetic ordering of neighboring chains is due to a common-enemy mechanism. Two antiferromagnetic exchange couplings between nearest neighbours within the Mn-Mn chain and interchain coupling via two GeO$_4$ tetrahedra suppress antiferromagnetic exchange via single GeO$_4$ tetrahedron and stabilize ferromagnetic ordering of Mn chains.
97 - Lin Lin , Y. L. Xie , J.-J. Wen 2015
The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, hosting many emergent properties, e.g. spin ice and monopole-type excitation. Recently, the magnetic monopole excitation of spin ice systems was predicted to be magnetoelectric active, while rare experimental works have directly confirmed this scenario. In this work, we performed systematic experimental investigation on the magnetoelectricity of Dy$_2$Ti$_2$O$_7$ by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at $T_{c1}$=25 K and $T_{c2}$=13 K have been observed. Remarkable magnetoelectric coupling is identified below the lower transition temperature, with a significant suppression of the electric polarization upon applied magnetic field. It is surprised that the lower ferroelectric transition temperature just coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, indicating implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms have also been discussed although a decent theory remains unavailable up to date. Our results will stimulate more investigations to explore multiferroicity in these spin ice systems and other frustrated magnets.
While tremendous success has been achieved to date in creating both single phase and composite magnetoelectric materials, the quintessential electric-field control of magnetism remains elusive. In this work, we demonstrate a linear magnetoelectric effect which arises from a novel carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO$_3$/SrTiO$_3$ interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behavior, the interface displays a spatial coexistence of magnetism and dielectric polarization suggesting a route to a new type of interfacial multiferroic.
Spinel Li$_x$Mn$_2$O$_4$ is a key cathode material that is used extensively in commercial Li-ion batteries. A challenge with this material has been that the capacity of the battery fades with cycling, an effect that can be traced to the presence of an anti-ferromagnetic insulator phase in the fully lithiated LiMn$_2$O$_4$ (LMO) and the associated charge disproportionation that drives distortions of the MnO$_6$ octahedra. Here, by combining x-ray magnetic Compton scattering experiments with parallel first-principles computations, we show that the anti-ferromagnetic phase of LMO is surrounded by a robust ferrimagnetic metallic phase, which becomes stable when even a small amount of Li is removed from or added to the charge-ordered LMO. In this surprising ferrimagnetic state, charge-ordering and octahedral distortions are found to be strongly suppressed. We identify the nature of the ferrimagnetic orbitals involved through theoretical and experimental analyses of the magnetic Compton scattering spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا