Do you want to publish a course? Click here

Counterpropagating Two-Soliton Solutions in the FPU Lattice

98   0   0.0 ( 0 )
 Added by Aaron Hoffman
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We study the interaction of small amplitude, long wavelength solitary waves in the Fermi-Pasta-Ulam model with general nearest-neighbor interaction potential. We establish global-in-time existence and stability of counter-propagating solitary wave solutions. These solutions are close to the linear superposition of two solitary waves for large positive and negative values of time; for intemediate values of time these solutions describe the interaction of two counterpropagating pulses. These solutions are stable with respect to perturbations in $ell^2$ and asymptotically stable with respect to perturbations which decay exponentially at spatial $pm infty$.}



rate research

Read More

After a brief comprehensive review of old and new results on the well known Fermi-Pasta-Ulam (FPU) conservative system of $N$ nonlinearly coupled oscillators, we present a compact linear mode representation of the Hamiltonian of the FPU system with quartic nonlinearity and periodic boundary conditions, with explicitly computed mode coupling coefficients. The core of the paper is the proof of the existence of one-mode and two-mode exact solutions, physically representing nonlinear standing and travelling waves of small wavelength whose explicit lattice representations are obtained, and which are valid also as $N rightarrow infty$. Moreover, and more generally, we show the presence of multi-mode invariant submanifolds. Destabilization of these solutions by a parametric perturbation mechanism leads to the establishment of chaotic in time mode interaction channels, corresponding to the formation in phase space of bounded stochastic layers on submanifolds. The full mode-space stability problem of the $N/2$ zone-boundary mode is solved, showing that this mode becomes unstable through a mechanism of the modulational Benjamin-Feir type. In the thermodynamic limit the mode is always unstable but with instability growth rate linearly vanishing with energy density. The physical significance of these solutions and of their stability properties, with respect to the previously much more studied equipartition problem for long wavelength initial excitations, is briefly discussed.
We investigate the validity of a soliton dynamics behavior in the semi-relativistic limit for the nonlinear Schrodinger equation in $R^{N}, Nge 3$, in presence of a singular external potential.
183 - A. Hoffman , C.E. Wayne 2008
We prove the existence of asymptotic two-soliton states in the Fermi-Pasta-Ulam model with general interaction potential. That is, we exhibit solutions whose difference in $ell^2$ from the linear superposition of two solitary waves goes to zero as time goes to infinity.
We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method is based on adapting the velocity of the traveling wave by solving a stochastic ordinary differential equation (SODE) and tracking perturbations to the wave meeting a stochastic partial differential equation (SPDE) coupled to an ordinary differential equation (ODE). This approach has been employed by Kruger and Stannat for scalar stochastic bistable reaction-diffusion equations such as the Nagumo equation. A main difference in our situation of an SPDE coupled to an ODE is that the linearization around the traveling wave is not self-adjoint anymore, so that fluctuations around the wave cannot be expected to be orthogonal in a corresponding inner product. We demonstrate that this problem can be overcome by making use of Riesz instead of orthogonal spectral projections. We expect that our approach can also be applied to traveling waves and other patterns in more general situations such as systems of SPDEs that are not self-adjoint. This provides a major generalization as these systems are prevalent in many applications.
82 - Claude Viterbo 2021
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomega)=H(x,p;omega)$. We consider for an initial condition $fin C^0 ( {mathbb R}^n)$, the family of variational solutions of the stochastic Hamilton-Jacobi equations $$left{ begin{aligned} frac{partial u^{ varepsilon }}{partial t}(t,x;omega)+Hleft (frac{x}{ varepsilon } , frac{partial u^varepsilon }{partial x}(t,x;omega);omega right )=0 & u^varepsilon (0,x;omega)=f(x)& end{aligned} right .$$ Under some coercivity assumptions on $p$ -- but without any convexity assumption -- we prove that for a.e. $omega in Omega$ we have $C^0-lim u^{varepsilon}(t,x;omega)=v(t,x)$ where $v$ is the variational solution of the homogenized equation $$left{ begin{aligned} frac{partial v}{partial t}(x)+{overline H}left (frac{partial v }{partial x}(x) right )=0 & v (0,x)=f(x)& end{aligned} right.$$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا