Do you want to publish a course? Click here

Multiscale analysis for traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations

217   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method is based on adapting the velocity of the traveling wave by solving a stochastic ordinary differential equation (SODE) and tracking perturbations to the wave meeting a stochastic partial differential equation (SPDE) coupled to an ordinary differential equation (ODE). This approach has been employed by Kruger and Stannat for scalar stochastic bistable reaction-diffusion equations such as the Nagumo equation. A main difference in our situation of an SPDE coupled to an ODE is that the linearization around the traveling wave is not self-adjoint anymore, so that fluctuations around the wave cannot be expected to be orthogonal in a corresponding inner product. We demonstrate that this problem can be overcome by making use of Riesz instead of orthogonal spectral projections. We expect that our approach can also be applied to traveling waves and other patterns in more general situations such as systems of SPDEs that are not self-adjoint. This provides a major generalization as these systems are prevalent in many applications.



rate research

Read More

We use geometric singular perturbation techniques combined with an action functional approach to study traveling pulse solutions in a three-component FitzHugh--Nagumo model. First, we derive the profile of traveling $1$-pulse solutions with undetermined width and propagating speed. Next, we compute the associated action functional for this profile from which we derive the conditions for existence and a saddle-node bifurcation as the zeros of the action functional and its derivatives. We obtain the same conditions by using a different analytical approach that exploits the singular limit of the problem. We also apply this methodology of the action functional to the problem for traveling $2$-pulse solutions and derive the explicit conditions for existence and a saddle-node bifurcation. From these we deduce a necessary condition for the existence of traveling $2$-pulse solutions. We end this article with a discussion related to Hopf bifurcations near the saddle-node bifurcation.
140 - Bixiang Wang 2008
The existence of a random attractor for the stochastic FitzHugh-Nagumo system defined on an unbounded domain is established. The pullback asymptotic compactness of the stochastic system is proved by uniform estimates on solutions for large space and time variables. These estimates are obtained by a cut-off technique.
208 - Bixiang Wang 2008
The existence of a pullback attractor is established for the singularly perturbed FitzHugh-Nagumo system defined on the entire space $R^n$ when external terms are unbounded in a phase space. The pullback asymptotic compactness of the system is proved by using uniform a priori estimates for far-field values of solutions. Although the limiting system has no global attractor, we show that the pullback attractors for the perturbed system with bounded external terms are uniformly bounded, and hence do not blow up as a small parameter approaches zero.
82 - Claude Viterbo 2021
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomega)=H(x,p;omega)$. We consider for an initial condition $fin C^0 ( {mathbb R}^n)$, the family of variational solutions of the stochastic Hamilton-Jacobi equations $$left{ begin{aligned} frac{partial u^{ varepsilon }}{partial t}(t,x;omega)+Hleft (frac{x}{ varepsilon } , frac{partial u^varepsilon }{partial x}(t,x;omega);omega right )=0 & u^varepsilon (0,x;omega)=f(x)& end{aligned} right .$$ Under some coercivity assumptions on $p$ -- but without any convexity assumption -- we prove that for a.e. $omega in Omega$ we have $C^0-lim u^{varepsilon}(t,x;omega)=v(t,x)$ where $v$ is the variational solution of the homogenized equation $$left{ begin{aligned} frac{partial v}{partial t}(x)+{overline H}left (frac{partial v }{partial x}(x) right )=0 & v (0,x)=f(x)& end{aligned} right.$$
We consider a nonlinear reaction diffusion system of parabolic type known as the monodomain equations, which model the interaction of the electric current in a cell. Together with the FitzHugh-Nagumo model for the nonlinearity they represent defibrillation processes of the human heart. We study a fairly general type with co-located inputs and outputs describing both boundary and distributed control and observation. The control objective is output trajectory tracking with prescribed performance. To achieve this we employ the funnel controller, which is model-free and of low complexity. The controller introduces a nonlinear and time-varying term in the closed-loop system, for which we prove existence and uniqueness of solutions. Additionally, exploiting the parabolic nature of the problem, we obtain Holder continuity of the state, inputs and outputs. We illustrate our results by a simulation of a standard test example for the termination of reentry waves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا