Do you want to publish a course? Click here

Very Special Relativity in Curved Space-Times

157   0   0.0 ( 0 )
 Added by Wolfgang Mueck
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The generalization of Cohen and Glashows Very Special Relativity to curved space-times is considered. Gauging the SIM(2) symmetry does not, in general, provide the coupling to the gravitational background. However, locally SIM(2) invariant Lagrangians can always be constructed. For space-times with SIM(2) holonomy, they describe chiral fermions propagating freely as massive particles.



rate research

Read More

In this paper we recall the construction of scalar field action on $kappa$-Minkowski space-time and investigate its properties. In particular we show how the co-product of $kappa$-Poincare algebra of symmetries arises from the analysis of the symmetries of the action, expressed in terms of Fourier transformed fields. We also derive the action on commuting space-time, equivalent to the original one. Adding the self-interaction $Phi^4$ term we investigate the modified conservation laws. We show that the local interactions on $kappa$-Minkowski space-time give rise to 6 inequivalent ways in which energy and momentum can be conserved at four-point vertex. We discuss the relevance of these results for Doubly Special Relativity.
We show that depending on the direction of deformation of $kappa$-Poincare algebra (time-like, space-like, or light-like) the associated phase spaces of single particle in Doubly Special Relativity theories have the energy-momentum spaces of the form of de Sitter, anti-de Sitter, and flat space, respectively.
464 - J. Kowalski-Glikman 2013
In this paper we review some aspects of relativistic particles mechanics in the case of a non-trivial geometry of momentum space. We start with showing how the curved momentum space arises in the theory of gravity in 2+1 dimensions coupled to particles, when (topological) degrees of freedom of gravity are solved for. We argue that there might exist a similar topological phase of quantum gravity in 3+1 dimensions. Then we characterize the main properties of the theory of interacting particles with curved momentum space and the symmetries of the action. We discuss the spacetime picture and the emergence of the principle of relative locality, according to which locality of events is not absolute but becomes observer dependent, in the controllable, relativistic way. We conclude with the detailed review of the most studied kappa-Poincare framework, which corresponds to the de Sitter momentum space.
The Snyder-de Sitter (SdS) model which is invariant under the action of the de Sitter group, is an example of a noncommutative spacetime with three fundamental scales. In this paper, we considered the massless Dirac fermions in graphene layer in a curved Snyder spacetime which are subjected to an external magnetic field. We employed representation in the momentum space to derive the energy eigenvalues and the eigenfunctions of the system. Then, we used the deduced energy function obtaining the internal energy, heat capacity, and entropy functions. We investigated the role of the fundamental scales on these thermal quantities of the graphene layer. We found that the effect of the SdS model on the thermodynamic properties is significant.
The current status of Doubly Special Relativity research program is shortly presented. I dedicate this paper to my teacher and friend Professor Jerzy Lukierski on occasion of his seventieth birthday.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا