No Arabic abstract
In this paper we review some aspects of relativistic particles mechanics in the case of a non-trivial geometry of momentum space. We start with showing how the curved momentum space arises in the theory of gravity in 2+1 dimensions coupled to particles, when (topological) degrees of freedom of gravity are solved for. We argue that there might exist a similar topological phase of quantum gravity in 3+1 dimensions. Then we characterize the main properties of the theory of interacting particles with curved momentum space and the symmetries of the action. We discuss the spacetime picture and the emergence of the principle of relative locality, according to which locality of events is not absolute but becomes observer dependent, in the controllable, relativistic way. We conclude with the detailed review of the most studied kappa-Poincare framework, which corresponds to the de Sitter momentum space.
I briefly discuss the construction of a theory of particles with curved momentum space and its consequence, the principle of relative locality.
The Snyder-de Sitter (SdS) model which is invariant under the action of the de Sitter group, is an example of a noncommutative spacetime with three fundamental scales. In this paper, we considered the massless Dirac fermions in graphene layer in a curved Snyder spacetime which are subjected to an external magnetic field. We employed representation in the momentum space to derive the energy eigenvalues and the eigenfunctions of the system. Then, we used the deduced energy function obtaining the internal energy, heat capacity, and entropy functions. We investigated the role of the fundamental scales on these thermal quantities of the graphene layer. We found that the effect of the SdS model on the thermodynamic properties is significant.
We study bubble universe collisions in the ultrarelativistic limit with the new feature of allowing for nontrivial curvature in field space. We establish a simple geometrical interpretation of such collisions in terms of a double family of field profiles whose tangent vector fields stand in mutual parallel transport. This provides a generalization of the well-known flat field space limit of the free passage approximation. We investigate the limits of this approximation and illustrate our analytical results with a numerical simulations.
The generalization of Cohen and Glashows Very Special Relativity to curved space-times is considered. Gauging the SIM(2) symmetry does not, in general, provide the coupling to the gravitational background. However, locally SIM(2) invariant Lagrangians can always be constructed. For space-times with SIM(2) holonomy, they describe chiral fermions propagating freely as massive particles.
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform vanishes when the conformal dimension and spin are those of a double twist operator $Delta = 2Delta_phi + ell + 2n$. By analytically continuing to Lorentzian signature we show that the spectral density at high spatial momenta has support on the spectrum condition $|omega| > |k|$. This leads to a series of sum rules. Finally, we explicitly match the thermal block expansion with the momentum space Greens function at finite temperature in several examples.