Do you want to publish a course? Click here

A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling

126   0   0.0 ( 0 )
 Added by Colin Cotter
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a mixed discontinuous/continuous finite element pair for ocean modelling, with continuous quadratic pressure/layer depth and discontinuous velocity. We investigate the finite element pair applied to the linear shallow-water equations on an f-plane. The element pair has the property that all geostrophically balanced states which strongly satisfy the boundary conditions have discrete divergence equal to exactly zero and hence are exactly steady states of the discretised equations. This means that the finite element pair has excellent geostrophic balance properties. We illustrate these properties using numerical tests and provide convergence calculations which show that the discretisation has quadratic errors, indicating that the element pair is stable.



rate research

Read More

We introduce a new mixed discontinuous/continuous Galerkin finite element for solving the 2- and 3-dimensional wave equations and equations of incompressible flow. The element, which we refer to as P1dg-P2, uses discontinuous piecewise linear functions for velocity and continuous piecewise quadratic functions for pressure. The aim of introducing the mixed formulation is to produce a new flexible element choice for triangular and tetrahedral meshes which satisfies the LBB stability condition and hence has no spurious zero-energy modes. We illustrate this property with numerical integrations of the wave equation in two dimensions, an analysis of the resultant discrete Laplace operator in two and three dimensions, and a normal mode analysis of the semi-discrete wave equation in one dimension.
152 - C. J. Cotter , J. Thuburn 2012
We describe discretisations of the shallow water equations on the sphere using the framework of finite element exterior calculus, which are extensions of the mimetic finite difference framework presented in Ringler, Thuburn, Klemp, and Skamarock (Journal of Computational Physics, 2010). The exterior calculus notation provides a guide to which finite element spaces should be used for which physical variables, and unifies a number of desirable properties. We present two formulations: a ``primal formulation in which the finite element spaces are defined on a single mesh, and a ``primal-dual formulation in which finite element spaces on a dual mesh are also used. Both formulations have velocity and layer depth as prognostic variables, but the exterior calculus framework leads to a conserved diagnostic potential vorticity. In both formulations we show how to construct discretisations that have mass-consistent (constant potential vorticity stays constant), stable and oscillation-free potential vorticity advection.
243 - Yong Liu , Jianfang Lu , Qi Tao 2021
In this paper, we develop a well-balanced oscillation-free discontinuous Galerkin (OFDG) method for solving the shallow water equations with a non-flat bottom topography. One notable feature of the constructed scheme is the well-balanced property, which preserves exactly the hydrostatic equilibrium solutions up to machine error. Another feature is the non-oscillatory property, which is very important in the numerical simulation when there exist some shock discontinuities. To control the spurious oscillations, we construct an OFDG method with an extra damping term to the existing well-balanced DG schemes proposed in [Y. Xing and C.-W. Shu, CICP, 1(2006), 100-134.]. With a careful construction of the damping term, the proposed method achieves both the well-balanced property and non-oscillatory property simultaneously without compromising any order of accuracy. We also present a detailed procedure for the construction and a theoretical analysis for the preservation of the well-balancedness property. Extensive numerical experiments including one- and two-dimensional space demonstrate that the proposed methods possess the desired properties without sacrificing any order of accuracy.
We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor-Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We illustrate our discretisation with some standard rotating sphere test problems.
Fourth-order differential equations play an important role in many applications in science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with a focus on the effective treatment of the different boundary conditions that arise naturally in a variational formulation. Our formulation is based on introducing the gradient of the solution as an explicit variable, constrained using a Lagrange multiplier. The essential boundary conditions are enforced weakly, using Nitsches method where required. As a result, the problem is rewritten as a saddle-point system, requiring analysis of the resulting finite-element discretization and the construction of optimal linear solvers. Here, we discuss the analysis of the well-posedness and accuracy of the finite-element formulation. Moreover, we develop monolithic multigrid solvers for the resulting linear systems. Two and three-dimensional numerical results are presented to demonstrate the accuracy of the discretization and efficiency of the multigrid solvers proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا