Do you want to publish a course? Click here

The single degenerate channel for the progenitor of type Ia supernovae

106   0   0.0 ( 0 )
 Added by Xiangcun Meng
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have carried out a detailed study of the single-degenerate channel for the progenitors of type Ia supernovae (SNe Ia). In the model, a carbon-oxygen white dwarf (CO WD) accretes hydrogen-rich material from an unevolved or a slightly evolved non-degenerate companion to increase its mass to Chandrasekhar mass limit. Incorporating the prescription of cite{HAC99a} for the accretion efficiency into Eggletons stellar evolution code and assuming that the prescription is valid for all metallicities, we performed binary stellar evolution calculations for more than 25,000 close WD binary systems with various metallicities. The initial parameter spaces for SNe Ia are presented in an orbital period-secondary mass ($log P_{rm i}, M_{rm 2}^{rm i}$) plane for each $Z$. Adopting the results above, we studied the birth rate of SNe Ia for various $Z$ via binary population synthesis. From the study, we see that for a high $Z$, SNe Ia occur systemically earlier and the peak value of the birth rate is larger if a single starburst is assumed. The Galactic birth rate from the channel is lower than (but comparable to) that inferred from observations. We also showed the distributions of the parameters of the binary systems at the moment of supernova explosion and the distributions of the properties of companions after supernova explosion. The former provides physics input to simulate the interaction between supernova ejecta and its companion, and the latter is helpful to search for the companions in supernova remnants.



rate research

Read More

Single Degenerate model is the most widely accepted progenitor model of type Ia supernovae (SNe Ia), in which a carbon-oxygen white dwarf (CO WD) accretes hydrogen-rich material from a main sequence or a slightly evolved star (WD +MS) to increase its mass, and explodes when its mass approaches the Chandrasekhar mass limit. During the mass transfer phase between the two components, an optically thick wind may occur and the material lost as the wind may exist as circumstellar material (CSM). Searching the CSM around progenitor star is helpful to discriminate different progenitor models of SNe Ia. Meanwhile, the CSM is a source of color excess.The purpose of this paper is to study the color excess produced from the single-degenerate progenitor model with optically thick wind, and reproduce the distribution of color excesses of SNe Ia. Meng et al. (2009) systemically carried out binary evolution calculation of the WD +MS systems for various metallicities and showed the parameters of the systems before Roche lobe overflow and at the moment of supernova explosion in Meng & Yang (2009). With the results of Meng et al. (2009), we calculate the color excesses of SNe Ia at maximum light via a simple analytic method.We reproduces the distribution of color excesses of SNe Ia by our binary population synthesis approach if the velocity of the optically thick wind is taken to be of order of magnitude of 10 km s$^{rm -1}$. However, if the wind velocity is larger than 100 km s$^{rm -1}$, the reproduction is bad.
Close double degenerate binaries are one of the favoured progenitor channels for type Ia supernovae, but it is unclear how many suitable systems there are in the Galaxy. We report results of a large radial velocity survey for double degenerate (DD) binaries using the UVES spectrograph at the ESO VLT (ESO SN Ia Progenitor surveY - SPY). Exposures taken at different epochs are checked for radial velocity shifts indicating close binary systems. We observed 689 targets classified as DA (displaying hydrogen-rich atmospheres), of which 46 turned out to possess a cool companion. We measured radial velocities (RV) of the remaining 643 DA white dwarfs. We managed to secure observations at two or more epochs for 625 targets, supplemented by eleven objects meeting our selection criteria from literature. The data reduction and analysis methods applied to the survey data are described in detail. The sample contains 39 double degenerate binaries, only four of which were previously known. 20 are double-lined systems, in which features from both components are visible, the other 19 are single-lined binaries. We provide absolute RVs transformed to the heliocentric system suitable for kinematic studies. Our sample is large enough to sub-divide by mass: 16 out of 44 low mass targets (<= 0.45 Msun) are detected as DDs, while just 23 of the remaining 567 with multiple spectra and mass >0.45 Msun are double. Although the detected fraction amongst the low mass objects (36.4 +/- 7.3%) is significantly higher than for the higher-mass, carbon/oxygen-core dominated part of the sample (3.9 +/- 0.8%), it is lower than the detection efficiency based upon companion star masses >= 0.05 Msun. This suggests either companion stars of mass < 0.05 Msun, or that some of the low mass white dwarfs are single.
The double-degenerate (DD) model, involving the merging of massive double carbon-oxygen white dwarfs (CO WDs) driven by gravitational wave radiation, is one of the classical pathways for the formation of type Ia supernovae (SNe Ia). Recently, it has been proposed that the WD+He subgiant channel has a significant contribution to the production of massive double WDs, in which the primary WD accumulates mass by accreting He-rich matter from a He subgiant. We evolved about 1800 CO WD+He star systems and obtained a large and dense grid for producing SNe Ia through the DD model. We then performed a series of binary population synthesis simulations for the DD model, in which the WD+He subgiant channel is calculated by interpolations in this grid. According to our standard model, the Galactic birthrate of SNe Ia is about 2.4*10^{-3} yr^{-1} for the WD+He subgiant channel of the DD model; the total birthrate is about 3.7*10^{-3} yr^{-1} for all channels, reproducing that of observations. Previous theoretical models still have deficit with the observed SNe Ia with delay times <1 Gyr and >8 Gyr. After considering the WD+He subgiant channel, we found that the delay time distributions is comparable with the observed results. Additionally, some recent studies proposed that the violent WD mergers are more likely to produce SNe Ia based on the DD model. We estimated that the violent mergers through the DD model may only contribute to about 16% of all SNe Ia.
The origin of the progenitors of type Ia supernovae (SNe Ia) is still uncertain. The core-degenerate (CD) scenario has been proposed as an alternative way for the production of SNe Ia. In this scenario, SNe Ia are formed at the final stage of common-envelope evolution from a merger of a carbon-oxygen white dwarf (CO WD) with the CO core of an asymptotic giant branch companion. However, the birthrates of SNe Ia from this scenario are still not well determined. In this work, we performed a detailed investigation on the CD scenario based on a binary population synthesis approach. The SN Ia delay times from this scenario are basically in the range of 90Myr-2500Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times although this scenario can also produce some old SNe Ia. Meanwhile, our work indicates that the Galactic birthrates of SNe Ia from this scenario are no more than 20% of total SNe Ia due to more careful treatment of mass transfer. Although the SN Ia birthrates in the present work are lower than those in Ilkov & Soker, the CD scenario cannot be ruled out as a viable mechanism for the formation of SNe Ia. Especially, SNe Ia with circumstellar material from this scenario contribute to 0.7-10% of total SNe Ia, which means that the CD scenario can reproduce the observed birthrates of SNe Ia like PTF 11kx. We also found that SNe Ia happen systemically earlier for a high value of metallicity and their birthrates increase with metallicity.
We place statistical constraints on Type Ia supernova (SN Ia) progenitors using 227 nebular phase spectra of 111 SNe Ia. We find no evidence of stripped companion emission in any of the nebular phase spectra. Upper limits are placed on the amount of mass that could go undetected in each spectrum using recent hydrodynamic simulations. With these null detections, we place an observational $3sigma$ upper limit on the fraction of SNe Ia that are produced through the classical H-rich non-degenerate companion scenario of < 5.5%. Additionally, we set a tentative $3sigma$ upper limit on He star progenitor scenarios of < 6.4%, although further theoretical modelling is required. These limits refer to our most representative sample including normal, 91bg-like, 91T-like, and Super Chandrasekhar sne but excluding SNe Iax and SNe Ia-CSM. As part of our analysis, we also derive a Nebular Phase Phillips Relation, which approximates the brightness of a SN Ia from $150-500$~days after maximum using the peak magnitude and decline rate parameter $Delta m_{15} (B)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا