Do you want to publish a course? Click here

Dynamical Regularization in Scalefree-trees of Coupled 2D Chaotic Maps

95   0   0.0 ( 0 )
 Added by Zoran Levnaji\\'c
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dynamics of coupled 2D chaotic maps with time-delay on a scalefree-tree is studied, with different types of the collective behaviors already been reported for various values of coupling strength [1]. In this work we focus on the dynamics time-evolution at the coupling strength of the stability threshold and examine the properties of the regularization process. The time-scales involved in the appearance of the regular state and the periodic state are determined. We find unexpected regularity in the the systems final steady state: all the period values turn out to be integer multiples of one among given numbers. Moreover, the period value distribution follows a power-law with a slope of -2.24.



rate research

Read More

We study two-dimensional chaotic standard maps coupled along the edges of scale-free trees and tree-like subgraph (4-star) with a non-symplectic coupling and time delay between the nodes. Apart from the chaotic and regular 2-periodic motion, the coupled map system exhibits variety of dynamical effects in a wide range of coupling strengths. This includes dynamical localization, emergent periodicity, and appearance of strange non-chaotic attractors. Near the strange attractors we find long-range correlations in the intervals of return-times to specified parts of the phase space. We substantiate the analysis with the finite-time Lyapunov stability. We also give some quantitative evidence of how the small-scale dynamics at 4-star motifs participates in the genesis of the collective behavior at the whole network.
We show that a class of random all-to-all spin models, realizable in systems of atoms coupled to an optical cavity, gives rise to a rich dynamical phase diagram due to the pairwise separable nature of the couplings. By controlling the experimental parameters, one can tune between integrable and chaotic dynamics on the one hand, and between classical and quantum regimes on the other hand. For two special values of a spin-anisotropy parameter, the model exhibits rational-Gaudin type integrability and it is characterized by an extensive set of spin-bilinear integrals of motion, independent of the spin size. More generically, we find a novel integrable structure with conserved charges that are not purely bilinear. Instead, they develop `dressing tails of higher-body terms, reminiscent of the dressed local integrals of motion found in Many-Body Localized phases. Surprisingly, this new type of integrable dynamics found in finite-size spin-1/2 systems disappears in the large-$S$ limit, giving way to classical chaos. We identify parameter regimes for characterizing these different dynamical behaviors in realistic experiments, in light of the limitations set by cavity dissipation.
Coupled map lattices (CMLs) are prototypical dynamical systems on networks/graphs. They exhibit complex patterns generated via the interplay of diffusive/Laplacian coupling and nonlinear reactions modelled by a single iterated map at each node; the maps are often taken as unimodal, e.g., logistic or tent maps. In this letter, we propose a class of higher-order coupled dynamical systems involving the hypergraph Laplacian, which we call coupled hypergraph maps (CHMs). By combining linearized (in-)stability analysis of synchronized states, hypergraph spectral theory, and numerical methods, we detect robust regions of chaotic cluster synchronization occurring in parameter space upon varying coupling strength and the main bifurcation parameter of the unimodal map. Furthermore, we find key differences between Laplacian and hypergraph Laplacian coupling and detect various other classes of periodic and quasi-periodic patterns. The results show the high complexity of coupled graph maps and indicate that they might be an excellent universal model class to understand the similarities and differences between dynamics on classical graphs and dynamics on hypergraphs.
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbour spin interaction in one spatial dimension on the non-equilibrium dynamical phase diagram of the fully-connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the pre-thermal state via a combination of analytic time-dependent spin-wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterised by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.
We investigate the processes of synchronization and phase ordering in a system of globally coupled maps possessing bistable, chaotic local dynamics. The stability boundaries of the synchronized states are determined on the space of parameters of the system. The collective properties of the system are characterized by means of the persistence probability of equivalent spin variables that define two phases, and by a magnetization-like order parameter that measures the phase-ordering behavior. As a consequence of the global interaction, the persistence probability saturates for all values of the coupling parameter, in contrast to the transition observed in the temporal behavior of the persistence in coupled maps on regular lattices. A discontinuous transition from a non-ordered state to a collective phase-ordered state takes place at a critical value of the coupling. On an interval of the coupling parameter, we find three distinct realizations of the phase-ordered state, which can be discerned by the corresponding values of the saturation persistence. Thus, this statistical quantity can provide information about the transient behaviors that lead to the different phase configurations in the system. The appearance of disordered and phase-ordered states in the globally coupled system can be understood by calculating histograms and the time evolution of local map variables associated to the these collective states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا