Do you want to publish a course? Click here

A Simple Dynamic Mind-map Framework To Discover Associative Relationships in Transactional Data Streams

206   0   0.0 ( 0 )
 Added by Christoph Schommer
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

In this paper, we informally introduce dynamic mind-maps that represent a new approach on the basis of a dynamic construction of connectionist structures during the processing of a data stream. This allows the representation and processing of recursively defined structures and avoids the problem of a more traditional, fixed-size architecture with the processing of input structures of unknown size. For a data stream analysis with association discovery, the incremental analysis of data leads to results on demand. Here, we describe a framework that uses symbolic cells to calculate associations based on transactional data streams as it exists in e.g. bibliographic databases. We follow a natural paradigm of applying simple operations on cells yielding on a mind-map structure that adapts over time.



rate research

Read More

The explorative mind-map is a dynamic framework, that emerges automatically from the input, it gets. It is unlike a verificative modeling system where existing (human) thoughts are placed and connected together. In this regard, explorative mind-maps change their size continuously, being adaptive with connectionist cells inside; mind-maps process data input incrementally and offer lots of possibilities to interact with the user through an appropriate communication interface. With respect to a cognitive motivated situation like a conversation between partners, mind-maps become interesting as they are able to process stimulating signals whenever they occur. If these signals are close to an own understanding of the world, then the conversational partner becomes automatically more trustful than if the signals do not or less match the own knowledge scheme. In this (position) paper, we therefore motivate explorative mind-maps as a cognitive engine and propose these as a decision support engine to foster trust.
Imagination is one of the most important factors which makes an artistic painting unique and impressive. With the rapid development of Artificial Intelligence, more and more researchers try to create painting with AI technology automatically. However, lacking of imagination is still a main problem for AI painting. In this paper, we propose a novel approach to inject rich imagination into a special painting art Mind Map creation. We firstly consider lexical and phonological similarities of seed word, then learn and inherit original painting style of the author, and finally apply Dadaism and impossibility of improvisation principles into painting process. We also design several metrics for imagination evaluation. Experimental results show that our proposed method can increase imagination of painting and also improve its overall quality.
In our understanding, a mind-map is an adaptive engine that basically works incrementally on the fundament of existing transactional streams. Generally, mind-maps consist of symbolic cells that are connected with each other and that become either stronger or weaker depending on the transactional stream. Based on the underlying biologic principle, these symbolic cells and their connections as well may adaptively survive or die, forming different cell agglomerates of arbitrary size. In this work, we intend to prove mind-maps eligibility following diverse application scenarios, for example being an underlying management system to represent normal and abnormal traffic behaviour in computer networks, supporting the detection of the user behaviour within search engines, or being a hidden communication layer for natural language interaction.
The Jaccard index is an important similarity measure for item sets and Boolean data. On large datasets, an exact similarity computation is often infeasible for all item pairs both due to time and space constraints, giving rise to faster approximate methods. The algorithm of choice used to quickly compute the Jaccard index $frac{vert A cap B vert}{vert Acup Bvert}$ of two item sets $A$ and $B$ is usually a form of min-hashing. Most min-hashing schemes are maintainable in data streams processing only additions, but none are known to work when facing item-wise deletions. In this paper, we investigate scalable approximation algorithms for rational set similarities, a broad class of similarity measures including Jaccard. Motivated by a result of Chierichetti and Kumar [J. ACM 2015] who showed any rational set similarity $S$ admits a locality sensitive hashing (LSH) scheme if and only if the corresponding distance $1-S$ is a metric, we can show that there exists a space efficient summary maintaining a $(1pm varepsilon)$ multiplicative approximation to $1-S$ in dynamic data streams. This in turn also yields a $varepsilon$ additive approximation of the similarity. The existence of these approximations hints at, but does not directly imply a LSH scheme in dynamic data streams. Our second and main contribution now lies in the design of such a LSH scheme maintainable in dynamic data streams. The scheme is space efficient, easy to implement and to the best of our knowledge the first of its kind able to process deletions.
We present data streaming algorithms for the $k$-median problem in high-dimensional dynamic geometric data streams, i.e. streams allowing both insertions and deletions of points from a discrete Euclidean space ${1, 2, ldots Delta}^d$. Our algorithms use $k epsilon^{-2} poly(d log Delta)$ space/time and maintain with high probability a small weighted set of points (a coreset) such that for every set of $k$ centers the cost of the coreset $(1+epsilon)$-approximates the cost of the streamed point set. We also provide algorithms that guarantee only positive weights in the coreset with additional logarithmic factors in the space and time complexities. We can use this positively-weighted coreset to compute a $(1+epsilon)$-approximation for the $k$-median problem by any efficient offline $k$-median algorithm. All previous algorithms for computing a $(1+epsilon)$-approximation for the $k$-median problem over dynamic data streams required space and time exponential in $d$. Our algorithms can be generalized to metric spaces of bounded doubling dimension.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا