Do you want to publish a course? Click here

Anomalous Hall Effect in Magnetite: Universal Scaling Relation Between Hall and Longitudinal Conductivity in Low-Conductivity Ferromagnets

130   0   0.0 ( 0 )
 Added by Matthias Opel
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The anomalous Hall effect (AHE) has been studied systematically in the low-conductivity ferromagnetic oxide Fe$_{3-x}$Zn$_x$O$_4$ with $x = 0$, 0.1, and 0.5. We used (001), (110), and (111) oriented epitaxial Fe$_{3-x}$Zn$_x$O$_4$ films grown on MgO and sapphire substrates in different oxygen partial pressure to analyze the dependence of the AHE on crystallographic orientation, Zn content, strain state, and oxygen deficiency. Despite substantial differences in the magnetic properties and magnitudes of the anomalous Hall conductivity $sigma_{xy}^{rm AHE}$ and the longitudinal conductivity $sigma_{xx}$ over several orders of magnitude, a universal scaling relation $sigma_{xy}^{rm AHE} propto sigma_{xx}^{alpha}$ with $alpha = 1.69 pm 0.08$ was found for all investigated samples. Our results are in agreement with recent theoretical and experimental findings for ferromagnetic metals in the dirty limit, where transport is by metallic conduction. We find the same scaling relation for magnetite, where hopping transport prevails. The fact that this relation is independent of crystallographic orientation, Zn content, strain state, and oxygen deficiency suggests that it is universal and particularly does not depend on the nature of the transport mechanism.



rate research

Read More

67 - T. Miyasato , N. Abe , T. Fujii 2006
Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in a variety of ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show a universal scaling behavior of anomalous Hall conductivity $sigma_{xy}$ as a function of longitudinal conductivity $sigma_{xx}$ over five orders of magnitude, which is well explained by a recent theory of the AHE taking into account both the intrinsic and extrinsic contributions. ANE is closely related with AHE and provides us with further information about the low-temperature electronic state of itinerant ferromagnets. Temperature dependence of transverse Peltier coefficient $alpha_{xy}$ shows an almost similar behavior among various ferromagnets, and this behavior is in good agreement quantitatively with that expected from the Mott rule.
170 - M. Glunk , J. Daeubler , W. Schoch 2009
We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities sigma_{xx} ranging from the low- to the high-conductivity regime. The anomalous Hall conductivity sigma_{xy}^(AH) is extracted from the measured longitudinal and Hall resistivities. A transition from sigma_{xy}^(AH)=20 Omega^{-1}cm^{-1} due to the Berry phase effect in the high-conductivity regime to a scaling relation sigma_{xy}^(AH) proportional to sigma_{xx}^{1.6} for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.
While the intrinsic anomalous Hall conductivity is normally written in terms of an integral of the electronic Berry curvature over the occupied portions of the Brillouin zone, Haldane has recently pointed out that this quantity (or more precisely, its ``non-quantized part) may alternatively be expressed as a Fermi-surface property. Here we present an {it ab-initio} approach for computing the anomalous Hall conductivity that takes advantage of this observation by converting the integral over the Fermi sea into a more efficient integral on the Fermi surface only. First, a conventional electronic-structure calculation is performed with spin-orbit interaction included. Maximally-localized Wannier functions are then constructed by a post-processing step in order to convert the {it ab-initio} electronic structure around the Fermi level into a tight-binding-like form. Working in the Wannier representation, the Brillouin zone is sampled on a large number of equally spaced parallel slices oriented normal to the total magnetization. On each slice, we find the intersections of the Fermi-surface sheets with the slice by standard contour methods, organize these into a set of closed loops, and compute the Berry phases of the Bloch states as they are transported around these loops. The anomalous Hall conductivity is proportional to the sum of the Berry phases of all the loops on all the slices. Illustrative calculations are performed for Fe, Co and Ni.
We study the mechanisms of the spin Hall effect (SHE) and anomalous Hall effect (AHE) in 3$d$ ferromagnetic metals (Fe, Co, permalloy (Ni$_{81}$Fe$_{19}$; Py), and Ni) by varying their resistivities and temperature. At low temperatures where the phonon scattering is negligible, the skew scattering coefficients of the SHE and AHE in Py are related to its spin polarization. However, this simple relation breaks down for Py at higher temperatures as well as for the other ferromagnetic metals at any temperature. We find that, in general, the relation between the SHE and AHE is more complex, with the temperature dependence of the SHE being much stronger than that of AHE.
Itinerant ferromagnets constitute an important class of materials wherein spin-polarization can affect the electric transport properties in nontrivial ways. One such phenomenon is anomalous Hall effect which depends on the details of the band structure such as the amount of band crossings in the valence band of the ferromagnet. Here, we have found extraordinary anomalous Hall effect in an itinerant ferromagnetic metal LaCrSb3. The rather two-dimensional nature of the magnetic subunit imparts large anisotropic anomalous Hall conductivity of 1250 S/cm at 2K. Our investigations suggest that a strong Berry curvature by abundant momentum-space crossings and narrow energy-gap openings are the primary sources of the anomalous Hall conductivity. An important observation is the existence of quasi-dispersionless bands in LaCrSb3 which is now known to increase the anomalous Hall conductivity. After introducing f-electrons, anomalous Hall conductivity experiences more than two-fold increase and reaches 2900 S/cm in NdCrSb3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا