Do you want to publish a course? Click here

Spin-magnetophonon level splitting in semimagnetic quantum wells

199   0   0.0 ( 0 )
 Added by Magamed Muradov I
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin-magnetophonon level splitting in a quantum well made of a semimagnetic wide gap semiconductor is considered. The semimagnetic semiconductors are characterized by a large effective $g$ factor. The resonance conditions $hbaromega_{rm LO}=mu_BgB$ for the spin flip between two Zeeman levels due to interaction with longitudinal optical phonons can be achieved sweeping magnetic field $B$. This condition is studied in quantum wells. It is shown that it leads to a level splitting that is dependent on the electron-phonon coupling strength as well as on the spin-orbit interaction in this structure. We treat in detail the Rashba model for the spin-orbit interaction assuming that the quantum well lacks inversion symmetry and briefly discuss other models. The resonant transmission and reflection of light by the well is suggested as a suitable experimental probe of the level splitting.



rate research

Read More

In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum Wells. The spin properties of excitons in nanostructures are determined by their fine structure. We will mainly focus in this review on GaAs and InGaAs quantum wells which are model systems.
We report on beating appearance in Shubnikov-de Haas oscillations in conduction band of 18-22nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-like spin splitting of the first conduction subband H1. The difference dN_s in two concentrations as a function of the gate voltage is qualitatively explained by a proposed toy electrostatic model involving the surface states localized at quantum well interfaces. Experimental values of dN_s are also in a good quantitative agreement with self-consistent calculations of Poisson and Schrodinger equations with eight-band kp Hamiltonian. Our results clearly demonstrate that the large spin splitting of the first conduction subband is caused by surface nature of $H1$ states hybridized with the heavy-hole band.
In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherence in device applications thus requires understanding how valence and conduction band spin splitting affects carrier spin dynamics. This paper studies the relevance of this decoherence mechanism for collective intersubband spin-density excitations (SDEs) in quantum wells. A density-functional formalism for the linear spin-density matrix response is presented that describes SDEs in the conduction band of quantum wells with subbands that may be non-parabolic and spin-split due to bulk or structural inversion asymmetry (Rashba effect). As an example, we consider a 40 nm GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction subbands. We find a coupling and wavevector-dependent splitting of the longitudinal and transverse SDEs. However, decoherence of the SDEs is not determined by subband spin splitting, due to collective effects arising from dynamical exchange and correlation.
The carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas has been studied by picosecond pump-probe Kerr rotation with an in-plane magnetic field. For resonant optical excitation of the positively charged exciton the spin precession shows two types of oscillations. Fast oscillating electron spin beats decay with the radiative lifetime of the charged exciton of 50 ps. Long lived spin coherence of the holes with dephasing times up to 650 ps. The spin dephasing time as well as the in-plane hole g factor show strong temperature dependence, underlining the importance of hole localization at cryogenic temperatures.
Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electron-like and hole-like states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs/GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in $e^2/h$ steps and a non-trivial Berry phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا