Do you want to publish a course? Click here

Magnetic phases evolution in the LaMn1-xFexO3+y system

209   0   0.0 ( 0 )
 Added by Oscar F. de Lima
 Publication date 2008
  fields Physics
and research's language is English
 Authors O. F. de Lima




Ask ChatGPT about the research

We have investigated the crystal structure and magnetic properties for polycrystalline samples of LaMn1-xFexO3+y, in the whole range x=0.0 to x=1.0, prepared by solid state reaction in air. All samples show the ORT-2 orthorhombic structure that suppresses the Jahn-Teller distortion, thus favoring a ferromagnetic (FM) superexchange (SE) interaction between Mn^{3+}-O-Mn^{3+}. For x=0.0 the oxygen excess (y ~ 0.09) produces vacancies in the La and Mn sites and generates a fraction around 18% of Mn^{4+} ions and 82% of the usual Mn^{3+} ions, with possible double exchange interaction between them. The Fe doping in this system is known to produce only stable Fe^{3+} ions. We find an evolution from a fairly strong FM phase with a Curie temperature T_{C} ~ 160 K, for x=0.0, to an antiferromagnetic (AFM) phase with T_{N} = 790 K, for x=1.0, accompanied by clear signatures of a cluster-glass behavior. For intermediate Fe contents a mixed-phase state occurs, with a gradual decrease (increase) of the FM (AFM) phase, accompanied by a systematic transition broadening for 0.2 < x < 0.7. A model based on the expected exchange interaction among the various magnetic-ion types, accounts very well for the saturation-magnetization dependence on Fe doping.



rate research

Read More

In the heavy-fermion metal CePdAl long-range antiferromagnetic order coexists with geometric frustration of one third of the Ce moments. At low temperatures the Kondo effect tends to screen the frustrated moments. We use magnetic fields $B$ to suppress the Kondo screening and study the magnetic phase diagram and the evolution of the entropy with $B$ employing thermodynamic probes. We estimate the frustration by introducing a definition of the frustration parameter based on the enhanced entropy, a fundamental feature of frustrated systems. In the field range where the Kondo screening is suppressed the liberated moments tend to maximize the magnetic entropy and strongly enhance the frustration. Based on our experiments, this field range may be a promising candidate to search for a quantum spin liquid.
218 - C. Aruta , C. Adamo , A. Galdi 2009
The magnetic and electronic modifications induced at the interfaces in (SrMnO$_{3}$)$_{n}$/(LaMnO$_{3}$)$_{2n}$ superlattices have been investigated by linear and circular magnetic dichroism in the Mn L$_{2,3}$ x-ray absorption spectra. Together with theoretical calculations, our data demonstrate that the charge redistribution across interfaces favors in-plane ferromagnetic (FM) order and $e_{g}(x^{2}-y^{2})$ orbital occupation, in agreement with the average strain. Far from interfaces, inside LaMnO$_3$, electron localization and local strain favor antiferromagnetism (AFM) and $e_{g}(3z^{2}-r^{2})$ orbital occupation. For $n=1$ the high density of interfacial planes ultimately leads to dominant FM order forcing the residual AFM phase to be in-plane too, while for $n geq 5$ the FM layers are separated by AFM regions having out-of-plane spin orientation.
Two magnetic phase transitions have been noted for SrCoO$_{3-y}$ for near-stoichiometric oxygen concentrations (small y). Using muon spin rotation and neutron scattering experiments, we have established that the two transitions represent separate, spatially distinct magnetic phases that coexist in a two-phase equilibrium mixture. The two phases most likely represent areas of the sample with different effective valence charge density. Further, the phases exist over regions with a length scale intermediate between nanoscale charge inhomogeneity and systems such as manganites or super-oxygenated cuprates with large length scale phase separation.
We have studied the crystal and magnetic structures of Fe-doped hexagonal manganites LuMn1-xFexO3 (x = 0, 0.1, 0.2, and 0.3) by using bulk magnetization and neutron powder diffraction methods. The samples crystalize consistently in a hexagonal structure and maintain the space group P63cm from 2 to 300 K. The Neel temperature TN increases continuously with increasing Fe-doping. In contrast to a single {Gamma}4 representation in LuMnO3, the magnetic ground state of the Fe-doped samples can only be described with a spin configuration described by a mixture of {Gamma}3 (P63cm) and {Gamma}4 (P63cm) representations, whose contributions have been quantitatively estimated. The drastic effect of Fe-doping is highlighted by composition-dependent spin reorientations. A phase diagram of the entire composition series is proposed based on the present results and those reported in literature. Our result demonstrates the importance of tailoring compositions in increasing magnetic transition temperatures of multiferroic systems.
We study the effects that ripples induce on the electrical and magnetic properties of graphene. The variation of the interatomic distance created by the ripples translates in a modulation of the hopping parameter between carbon atoms. A tight binding Hamiltonian including a Hubbard interaction term is solved self consistently for ripples with different amplitudes and periods. We find that, for values of the Hubbard interaction $U$ above a critical value $U_C$, the system displays a superposition of local ferromagnetic and antiferromagnetic ordered states. Nonetheless the global ferromagnetic order parameter is zero. The $U_C$ depends only on the product of the period and hopping amplitude modulation. When the Hubbard interaction is close to the critical value of the antiferromagnetic transition in pristine graphene, the antiferromagnetic order parameter becomes much larger than the ferromagnetic one, being the ground state similar to that of flat graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا