Do you want to publish a course? Click here

Semicircle Law of Vandermonde Ensemble

127   0   0.0 ( 0 )
 Added by Da Xu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the present paper, we give a simple proof of the level density of fixed trace square ensemble.We derive the integral equation of the level density of fixed trace square ensemble.Then we analyze the asymptotic behavior of the level density.



rate research

Read More

Hochstattler, Kirsch, and Warzel showed that the semicircle law holds for generalized Curie-Weiss matrix ensembles at or above the critical temperature. We extend their result to the case of subcritical temperatures for which the correlations between the matrix entries are stronger. Nevertheless, one may use the concept of approximately uncorrelated ensembles that was first introduced in the paper mentioned above. In order to do so one needs to remove the average magnetization of the entries by an appropriate modification of the ensemble that turns out to be of rank 1 thus not changing the limiting spectral measure.
We give a rigorous derivation of Fouriers law from a system of closure equations for a nonequilibrium stationary state of a Hamiltonian system of coupled oscillators subjected to heat baths on the boundary. The local heat flux is proportional to the temperature gradient with a temperature dependent heat conductivity and the stationary temperature exhibits a nonlinear profile.
We give a generalization of the random matrix ensembles, including all lassical ensembles. Then we derive the joint density function of the generalized ensemble by one simple formula, which give a direct and unified way to compute the density functions for all classical ensembles and various kinds of new ensembles. An integration formula associated with the generalized ensemble is also given. We also give a classification scheme of the generalized ensembles, which will include all classical ensembles and some new ensembles which were not considered before.
123 - Elisha D. Wolff 2021
We introduce constellation ensembles, in which charged particles on a line (or circle) are linked with charged particles on parallel lines (or concentric circles). We present formulas for the partition functions of these ensembles in terms of either the Hyperpfaffian or the Berezin integral of an appropriate alternating tensor. Adjusting the distances between these lines (or circles) gives an interpolation between a pair of limiting ensembles, such as one-dimensional $beta$-ensembles with $beta=K$ and $beta=K^2$.
We derive and compare various forms of local semicircle laws for random matrices with exchangeable entries which exhibit correlations that decay at a very slow rate. In fact, any $l$-point correlation will decay at a rate of $N^{-l/2}$. We call our ensembles emph{of Curie-Weiss type}, and Curie-Weiss($beta$)-distributed entries are admissible as long as $betaleq 1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا