We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3-manifolds split along a torus.
We bound the value of the Casson invariant of any integral homology 3-sphere $M$ by a constant times the distance-squared to the identity, measured in any word metric on the Torelli group $T$, of the element of $T$ associated to any Heegaard splitting of $M$. We construct examples which show this bound is asymptotically sharp.
Given a rank 2 hermitian bundle over a 3-manifold that is non-trivial admissible in the sense of Floer, one defines its Casson invariant as half the signed count of its projectively flat connections, suitably perturbed. We show that the 2-divisibility of this integer invariant is controlled in part by a formula involving the mod 2 cohomology ring of the 3-manifold. This formula counts flat connections on the induced adjoint bundle with Klein-four holonomy.
We give a rational surgery formula for the Casson-Walker invariant of a 2-component link in $S^{3}$ which is a generalization of Matveev-Polyaks formula. As application, we give more examples of non-hyperbolic L-space $M$ such that knots in $M$ are determined by their complements. We also apply the result for the cosmetic crossing conjecture.
We study the Seiberg-Witten invariant $lambda_{rm{SW}} (X)$ of smooth spin $4$-manifolds $X$ with integral homology of $S^1times S^3$ defined by Mrowka, Ruberman, and Saveliev as a signed count of irreducible monopoles amended by an index-theoretic correction term. We prove a splitting formula for this invariant in terms of the Fr{o}yshov invariant $h(X)$ and a certain Lefschetz number in the reduced monopole Floer homology of Kronheimer and Mrowka. We apply this formula to obstruct existence of metrics of positive scalar curvature on certain 4-manifolds, and to exhibit new classes of integral homology $3$-spheres of Rohlin invariant one which have infinite order in the homology cobordism group.
In this note, we revisit the $Theta$-invariant as defined by R. Bott and the first author. The $Theta$-invariant is an invariant of rational homology 3-spheres with acyclic orthogonal local systems, which is a generalization of the 2-loop term of the Chern-Simons perturbation theory. The $Theta$-invariant can be defined when a cohomology group is vanishing. In this note, we give a slightly modified version of the $Theta$-invariant that we can define even if the cohomology group is not vanishing.