We bound the value of the Casson invariant of any integral homology 3-sphere $M$ by a constant times the distance-squared to the identity, measured in any word metric on the Torelli group $T$, of the element of $T$ associated to any Heegaard splitting of $M$. We construct examples which show this bound is asymptotically sharp.
We prove that the cohomological dimension of the Torelli group for a closed connected orientable surface of genus g at least 2 is equal to 3g-5. This answers a question of Mess, who proved the lower bound and settled the case of g=2. We also find the cohomological dimension of the Johnson kernel (the subgroup of the Torelli group generated by Dehn twists about separating curves) to be 2g-3. For g at least 2, we prove that the top dimensional homology of the Torelli group is infinitely generated. Finally, we give a new proof of the theorem of Mess that gives a precise description of the Torelli group in genus 2. The main tool is a new contractible complex, called the complex of cycles, on which the Torelli group acts.
Proving a conjecture of Dennis Johnson, we show that the Torelli subgroup of the mapping class group has a finite generating set whose size grows cubically with respect to the genus of the surface. Our main tool is a new space called the handle graph on which the Torelli group acts cocompactly.
We develop a theory of equivariant group presentations and relate them to the second homology group of a group. Our main application says that the second homology group of the Torelli subgroup of the mapping class group is finitely generated as an $Sp(2g,mathbb{Z})$-module.
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second cohomology group of the level p congruence subgroup of the mapping class group, following my papers The second rational homology group of the moduli space of curves with level structures and The Picard group of the moduli space of curves with level structures.
We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3-manifolds split along a torus.