Do you want to publish a course? Click here

Signature of Magnetic Phase Separation in the Ground State of Pr1-xCaxMnO3

139   0   0.0 ( 0 )
 Added by Hao Sha
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron scattering has been used to investigate the evolution of the long- and short-range charge-ordered (CO), ferromagnetic (FM), and antiferromagnetic (AF) correlations in single crystals of Pr1-xCaxMnO3. The existence and population of spin clusters as refected by short-range correlations are found to drastically depend on the doping (x) and temperature (T). Concentrated spin clusters coexist with long-range canted AF order in a wide temperature range in x = 0.3 while clusters do not appear in x = 0.4 crystal. In contrast, both CO and AF order parameters in the x = 0.35 crystal show a precipitous decrease below ~ 35 K where spin clusters form. These results provide direct evidence of magnetic phase separation and indicate that there is a critical doping x_c (close to x = 0.35) that divides the phase-separated site-centered from the homogeneous bond-centered or charge-disproportionated CO ground state.

rate research

Read More

134 - L. Shen , E. Campillo , E. Young 2019
$gamma$-CoV$_{2}$O$_{6}$ is a quasi one-dimensional spin-$frac{3}{2}$ magnet that possesses two distinct magnetic orders in the ground state with modulation vectors $k_mathrm{1}$ = ($frac{1}{2}$, 0, 0) and $k_mathrm{2}$ = ($frac{1}{4}$, 0, -$frac{1}{4}$), respectively. Here, we use muon spin relaxation and rotation to reveal the thermodynamics of the magnetic phase separation in this compound. In the paramagnetic (PM) region, short-range correlated spin clusters emerge at $T_mathrm{m}$ $simeq$ 26 K at the $it{partial}$ expense of the PM volume. Upon further cooling, we show that these emergent clusters become spatially coherent at $T_mathrm{{N2}}$ = 7.5 K and eventually form the $k_mathrm{2}$ order at $T^{star}$ = 5.6 K, while the remaining PM spins are driven into the $k_mathrm{1}$ state at $T_mathrm{{N1}}$ = 6.6 K. These results stress magnetic microphase inhomogeneity as a thermodynamic precursor for the ground state phase separation in weakly coupled spin-$frac{3}{2}$ chains.
Using pulsed laser deposition and a unique fast quenching method, we have prepared SrCoOx epitaxial films on SiTiO3 substrates. As electrochemical oxidation increases the oxygen content from x = 2.75 to 3.0, the films tend to favor the discrete magnetic phases seen in bulk samples for the homologous series SrCoO(3-n/8) (n = 0, 1, 2). Unlike bulk samples, 200nm thick films remain single phase throughout the oxidation cycle. 300 nm films can show two simultaneous phases during deoxidation. These results are attributed to finite thickness effects and imply the formation of ordered regions larger than approximately 300 nm.
100 - Li Huang , Ruofan Chen , Haiyan Lu 2020
The ground state electronic structure and magnetic behaviors of curium dioxide (CmO$_{2}$) are controversial. In general, the formal valence of Cm ions in CmO$_{2}$ should be tetravalent. It implies a $5f^{6.0}$ electronic configuration and a non-magnetic ground state. However, it is in sharp contrast with the large magnetic moment measured by painstaking experiments. In order to clarify this contradiction, we tried to study the ground state electronic structure of CmO$_{2}$ by means of a combination of density functional theory and dynamical mean-field theory. We find that CmO$_{2}$ is a wide-gap charge transfer insulator with strong 5$f$ valence state fluctuation. It belongs to a mixed-valence compound indeed. The predominant electronic configurations for Cm ions are $5f^{6.0}$ and $5f^{7.0}$. The resulting magnetic moment agrees quite well with the experimental value. Therefore, the magnetic puzzle in CmO$_{2}$ can be appropriately explained by the mixed-valence scenario.
63 - D. Kim , B. Revaz , B. L. Zink 2002
We report the doping dependence of the order of the ferromagnetic metal to paramagnetic insulator phase transition in La1-xCaxMnO3. At x = 0.33, magnetization and specific heat data show a first order transition, with an entropy change (2.3 J/molK) accounted for by both volume expansion and the discontinuity of M ~ 1.7 Bohr magnetons via the Clausius-Clapeyron equation. At x = 0.4, the data show a continuous transition with tricritical point exponents alpha = 0.48+/- 0.06, beta = 0.25+/- 0.03, gamma = 1.03+/- 0.05, and delta = 5.0 +/- 0.8. This tricritical point separates first order (x<0.4) from second order (x>0.4) transitions.
The ground state of negatively charged excitons (trions) in high magnetic fields is shown to be a dark triplet state, confirming long-standing theoretical predictions. Photoluminescence (PL), reflection, and PL excitation spectroscopy of CdTe quantum wells reveal that the dark triplet trion has lower energy than the singlet trion above 24 Tesla. The singlet-triplet crossover is hidden (i.e., the spectral lines themselves do not cross due to different Zeeman energies), but is confirmed by temperature-dependent PL above and below 24 T. The data also show two bright triplet states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا