Do you want to publish a course? Click here

Reexaming the ground state and magnetic properties of curium dioxide

101   0   0.0 ( 0 )
 Added by Li Huang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ground state electronic structure and magnetic behaviors of curium dioxide (CmO$_{2}$) are controversial. In general, the formal valence of Cm ions in CmO$_{2}$ should be tetravalent. It implies a $5f^{6.0}$ electronic configuration and a non-magnetic ground state. However, it is in sharp contrast with the large magnetic moment measured by painstaking experiments. In order to clarify this contradiction, we tried to study the ground state electronic structure of CmO$_{2}$ by means of a combination of density functional theory and dynamical mean-field theory. We find that CmO$_{2}$ is a wide-gap charge transfer insulator with strong 5$f$ valence state fluctuation. It belongs to a mixed-valence compound indeed. The predominant electronic configurations for Cm ions are $5f^{6.0}$ and $5f^{7.0}$. The resulting magnetic moment agrees quite well with the experimental value. Therefore, the magnetic puzzle in CmO$_{2}$ can be appropriately explained by the mixed-valence scenario.



rate research

Read More

The metal-insulator transition and unconventional metallic transport in vanadium dioxide (VO$_2$) are investigated with a combination of spectroscopic ellipsometry and reflectance measurements. The data indicates that electronic correlations, not electron-phonon interactions, govern charge dynamics in the metallic state of VO$_2$. This study focuses on the frequency and temperature dependence of the conductivity in the regime of extremely short mean free path violating the Ioffe-Regel-Mott limit of metallic transport. The standard quasiparticle picture of charge conduction is found to be untenable in metallic VO$_2$.
A combination of the density functional theory and the single-site dynamical mean-field theory is employed to study the electronic structures of various allotropes of elemental curium (Cm-I, Cm-II, and Cm-III). We find that the 5$f$ valence electrons in the high-symmetry Cm-I and Cm-II phases remain localized, while they turn into itinerancy in the low-symmetry monoclinic Cm-III phase. In addition, conspicuous quasiparticle multiplets are identified in the 5$f$ electronic density of states of the Cm-III phase. We believe that it is the many-body transition between $5f^{7}$ and $5f^{8}$ configurations that gives rise to these quasiparticle multiplets. Therefore, the Cm-III phase is probably a new realization of the so-called Racah metal.
158 - Hao Sha , F. Ye , Pengcheng Dai 2008
Neutron scattering has been used to investigate the evolution of the long- and short-range charge-ordered (CO), ferromagnetic (FM), and antiferromagnetic (AF) correlations in single crystals of Pr1-xCaxMnO3. The existence and population of spin clusters as refected by short-range correlations are found to drastically depend on the doping (x) and temperature (T). Concentrated spin clusters coexist with long-range canted AF order in a wide temperature range in x = 0.3 while clusters do not appear in x = 0.4 crystal. In contrast, both CO and AF order parameters in the x = 0.35 crystal show a precipitous decrease below ~ 35 K where spin clusters form. These results provide direct evidence of magnetic phase separation and indicate that there is a critical doping x_c (close to x = 0.35) that divides the phase-separated site-centered from the homogeneous bond-centered or charge-disproportionated CO ground state.
We have grown the single crystal of PrRhAl$_4$Si$_2$, which crystallizes in the tetragonal crystal structure. From the low temperature physical property measurements like, magnetic susceptibility, magnetization, heat capacity and electrical resistivity, we found that this compound does not show any magnetic ordering down to 70~mK. Our crystal field calculations on the magnetic susceptibility and specific heat measurements reveal that the 9-fold degenerate $(2J+1)$ levels of Pr atom in PrRhAl$_4$Si$_2$, splits into 7 levels, with a singlet ground state and a well separated excited doublet state at 123~K, with a overall level splitting energy of 320~K.
The magnetic ground state of polycrystalline Neel skyrmion hosting material GaV$_4$S$_8$ has been investigated using ac susceptibility and powder neutron diffraction. In the absence of an applied magnetic field GaV$_4$S$_8$ undergoes a transition from a paramagnetic to a cycloidal state below 13~K and then to a ferromagnetic-like state below 6~K. With evidence from ac susceptibility and powder neutron diffraction, we have identified the commensurate magnetic structure at 1.5 K, with ordered magnetic moments of $0.23(2)~mu_{mathrm{B}}$ on the V1 sites and $0.22(1)~mu_{mathrm{B}}$ on the V2 sites. These moments have ferromagnetic-like alignment but with a 39(8)$^{circ}$ canting of the magnetic moments on the V2 sites away from the V$_4$ cluster. In the incommensurate magnetic phase that exists between 6 and 13 K, we provide a thorough and careful analysis of the cycloidal magnetic structure exhibited by this material using powder neutron diffraction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا