Do you want to publish a course? Click here

Physical properties of the new Uranium ternary compounds U3Bi4M3 (M=Ni, Rh)

132   0   0.0 ( 0 )
 Added by Tomasz Klimczuk
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the properties of two new isostructural compounds, U3Bi4Ni3 and U3Bi4Rh3. The first of these compounds is non-metallic, and the second is a nearly ferromagnetic metal, both as anticipated from their electron count relative to other U-based members of the larger 3-4-3 family. For U3Bi4Rh3, a logarithmic increase of C/T below 3 K, a resistivity proportional to T^4/3, and the recovery of Fermi-liquid behavior in both properties with applied fields greater than 3T, suggest that U3Bi4Rh3 may be a new example of a material displaying ferromagnetic quantum criticality.



rate research

Read More

The synthesis, crystal structure, and physical properties studied by means of x-ray diffraction, magnetic, thermal and transport measurements of CeMAl$_{4}$Si$_{2}$ (M = Rh, Ir, Pt) are reported, along with the electronic structure calculations for LaMAl$_{4}$Si$_{2}$ (M = Rh, Ir, Pt). These materials adopt a tetragonal crystal structure (space group P4/mmm) comprised of BaAl$_4$ blocks, separated by MAl$_2$ units, stacked along the $c$-axis. Both CeRhAl$_{4}$Si$_{2}$ and CeIrAl$_{4}$Si$_{2}$ order antiferromagnetically below $T_{N1}$=14 and 16 K, respectively, and undergo a second antiferromagnetic transitition at lower temperature ($T_{N2}$=9 and 14 K, respectively). CePtAl$_{4}$Si$_{2}$ orders ferromagnetically below $T_C$ =3 K with an ordered moment of $mu_{sat}$=0.8 $mu_{B}$ for a magnetic field applied perpendicular to the $c$-axis. Electronic structure calculations reveal quasi-2D character of the Fermi surface.
Only several compounds bearing Ag(II) cation and other transition metal cation have been known. Herein, we predict stability and crystal structures of hypothetical ternary silver(II) fluorides with copper, nickel and cobalt in 1:1 stoichiometry at pressure range from 0 GPa up to 20 GPa within the frame of Density Functional Theory. Calculations show that AgCoF4 could be synthesized already at ambient conditions but this compound would host diamagnetic Ag(I) and high-spin Co(III). However, at increased pressure ternary fluorides of Ag(II) featuring Cu and Ni could be synthesized, in the pressure windows of 7-14 and 8-15 GPa, respectively. All title compounds would be semiconducting and magnetically ordered.
We report the synthesis, crystal structure and characterization by means of single crystal x-ray diffraction, neutron powder diffraction, magnetic, thermal and transport measurements of the new heavy fermion compounds Ce$_{2}$MAl$_{7}$Ge$_{4}$ (M = Co, Ir, Ni, Pd). These compounds crystallize in a noncentrosymmetic tetragonal space group P={4}2$_{1}$m, consisting of layers of square nets of Ce atoms separated by Ge-Al and M-Al-Ge blocks. Ce$_{2}$CoAl$_{7}$Ge$_{4}$, Ce$_{2}$IrAl$_{7}$Ge$_{4}$ and Ce$_{2}$NiAl$_{7}$Ge$_{4}$ order magnetically behavior below $T_{M}=$ 1.8, 1.6, and 0.8 K, respectively. There is no evidence of magnetic ordering in Ce$_{2}$PdAl$_{7}$Ge$_{4}$ down to 0.4 K. The small amount of entropy released in the magnetic state of Ce$_{2}$MAl$_{7}$Ge$_{4}$ (M = Co, Ir, Ni) and the reduced specific heat jump at $T_M$ suggest a strong Kondo interaction in these materials. Ce$_{2}$PdAl$_{7}$Ge$_{4}$ shows non-Fermi liquid behavior, possibly due to the presence of a nearby quantum critical point.
Magnetic properties of silver(II) compounds have been of interest in recent years. In covalent compounds, the main mechanism of interaction between paramagnetic sites is the superexchange via the connecting ligand. To date, little is known of magnetic interactions between Ag(II) cations and other paramagnetic centres. It is because only a few compounds bearing Ag(II) cation and other paramagnetic transition metal cation are known experimentally. Recently the high-pressure synthesis of ternary silver(II) fluorides with 3d metal cations AgMF4 (M = Co, Ni, Cu) was predicted to be feasible. Here, we investigate the magnetic properties of these compounds in their diverse polymorphic forms. Using well established computational methods we predict superexchange pathways in AgMF4, evaluate coupling constants and calculate the impact of Ag(II) presence on superexchange between the other cations. The results indicate that the low-pressure form of AgCuF4, the only composed of stacked layers as the parent AgF2, would hold mainly Ag-Ag and Cu-Cu superexchange interactions. Upon compression, or with the nickel(II) cation, the Ag-M interactions in AgMF4 intensify, which is emphasized by an increase of Ag-M superexchange coupling constants and Ag-F-M angles. All the strongest Ag-M superexchange pathways are quasi-linear, leading to the formation of antiferromagnetic chains along the crystallographic directions. The impact of Ag(II) on M-M superexchange turns out to be moderate, due to factors connected to the crystal structure.
GdCo$_5$ may be considered as two sublattices - one of Gd and one of Co - whose magnetizations are in antiparallel alignment, forming a ferrimagnet. Substitution of nickel in the cobalt sublattice of GdCo$_5$ has been investigated to gain insight into how the magnetic properties of this prototype rare-earth/transition-metal magnet are affected by changes in the transition metal sublattice. Polycrystalline samples of GdCo$_{5-x}$Ni$_x$ for 0 $ leq x leq $ 5 were synthesized by arc melting. Structural characterization was carried out by powder x-ray diffraction and optical and scanning electron microscope imaging of metallographic slides, the latter revealing a low concentration of Gd$_2$(Co, Ni)$_7$ lamellae for $x leq 2.5$. Compensation - i.e. the cancellation of the opposing Gd and transition metal moments is observed for $1 leq x leq 3$ at a temperature which increases with Ni content; for larger $x$, no compensation is observed below 360 K. A peak in the coercivity is seen at $x approx 1$ at 10K coinciding with a minimum in the saturation magnetization. Density-functional theory calculations within the disordered local moment picture reproduce the dependence of the magnetization on Ni content and temperature. The calculations also show a peak in the magnetocrystalline anisotropy at similar Ni concentrations to the experimentally observed coercivity maximum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا