Do you want to publish a course? Click here

Unified storage systems for distributed Tier-2 centres

119   0   0.0 ( 0 )
 Added by Greig Cowan Dr
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

The start of data taking at the Large Hadron Collider will herald a new era in data volumes and distributed processing in particle physics. Data volumes of hundreds of Terabytes will be shipped to Tier-2 centres for analysis by the LHC experiments using the Worldwide LHC Computing Grid (WLCG). In many countries Tier-2 centres are distributed between a number of institutes, e.g., the geographically spread Tier-2s of GridPP in the UK. This presents a number of challenges for experiments to utilise these centres efficaciously, as CPU and storage resources may be sub-divided and exposed in smaller units than the experiment would ideally want to work with. In addition, unhelpful mismatches between storage and CPU at the individual centres may be seen, which make efficient exploitation of a Tier-2s resources difficult. One method of addressing this is to unify the storage across a distributed Tier-2, presenting the centres aggregated storage as a single system. This greatly simplifies data management for the VO, which then can access a greater amount of data across the Tier-2. However, such an approach will lead to scenarios where analysis jobs on one sites batch system must access data hosted on another site. We investigate this situation using the Glasgow and Edinburgh clusters, which are part of the ScotGrid distributed Tier-2. In particular we look at how to mitigate the problems associated with ``distant data access and discuss the security implications of having LAN access protocols traverse the WAN between centres.



rate research

Read More

We present Kaleidoscope an innovative system that supports live forensics for application performance problems caused by either individual component failures or resource contention issues in large-scale distributed storage systems. The design of Kaleidoscope is driven by our study of I/O failures observed in a peta-scale storage system anonymized as PetaStore. Kaleidoscope is built on three key features: 1) using temporal and spatial differential observability for end-to-end performance monitoring of I/O requests, 2) modeling the health of storage components as a stochastic process using domain-guided functions that accounts for path redundancy and uncertainty in measurements, and, 3) observing differences in reliability and performance metrics between similar types of healthy and unhealthy components to attribute the most likely root causes. We deployed Kaleidoscope on PetaStore and our evaluation shows that Kaleidoscope can run live forensics at 5-minute intervals and pinpoint the root causes of 95.8% of real-world performance issues, with negligible monitoring overhead.
Erasure codes are increasingly being studied in the context of implementing atomic memory objects in large scale asynchronous distributed storage systems. When compared with the traditional replication based schemes, erasure codes have the potential of significantly lowering storage and communication costs while simultaneously guaranteeing the desired resiliency levels. In this work, we propose the Storage-Optimized Data-Atomic (SODA) algorithm for implementing atomic memory objects in the multi-writer multi-reader setting. SODA uses Maximum Distance Separable (MDS) codes, and is specifically designed to optimize the total storage cost for a given fault-tolerance requirement. For tolerating $f$ server crashes in an $n$-server system, SODA uses an $[n, k]$ MDS code with $k=n-f$, and incurs a total storage cost of $frac{n}{n-f}$. SODA is designed under the assumption of reliable point-to-point communication channels. The communication cost of a write and a read operation are respectively given by $O(f^2)$ and $frac{n}{n-f}(delta_w+1)$, where $delta_w$ denotes the number of writes that are concurrent with the particular read. In comparison with the recent CASGC algorithm, which also uses MDS codes, SODA offers lower storage cost while pays more on the communication cost. We also present a modification of SODA, called SODA$_{text{err}}$, to handle the case where some of the servers can return erroneous coded elements during a read operation. Specifically, in order to tolerate $f$ server failures and $e$ error-prone coded elements, the SODA$_{text{err}}$ algorithm uses an $[n, k]$ MDS code such that $k=n-2e-f$. SODA$_{text{err}}$ also guarantees liveness and atomicity, while maintaining an optimized total storage cost of $frac{n}{n-f-2e}$.
Ubiquitous sensing devices frequently disseminate their data between them. The use of a distributed event-based system that decouples publishers of subscribers arises as an ideal candidate to implement the dissemination process. In this paper, we present a network architecture which merges the network and overlay layers of typical structured event-based systems. Directional Random Walks (DRWs) are used for the construction of this merged layer. Our first results show that DRWs are suitable to balance the load using a few nodes in the network to construct the dissemination path. As future work, we propose to study the properties of this new layer and to work on the design of Bloom filters to manage broker nodes.
To achieve reliability in distributed storage systems, data has usually been replicated across different nodes. However the increasing volume of data to be stored has motivated the introduction of erasure codes, a storage efficient alternative to replication, particularly suited for archival in data centers, where old datasets (rarely accessed) can be erasure encoded, while replicas are maintained only for the latest data. Many recent works consider the design of new storage-centric erasure codes for improved repairability. In contrast, this paper addresses the migration from replication to encoding: traditionally erasure coding is an atomic operation in that a single node with the whole object encodes and uploads all the encoded pieces. Although large datasets can be concurrently archived by distributing individual object encodings among different nodes, the network and computing capacity of individual nodes constrain the archival process due to such atomicity. We propose a new pipelined coding strategy that distributes the network and computing load of single-object encodings among different nodes, which also speeds up multiple object archival. We further present RapidRAID codes, an explicit family of pipelined erasure codes which provides fast archival without compromising either data reliability or storage overheads. Finally, we provide a real implementation of RapidRAID codes and benchmark its performance using both a cluster of 50 nodes and a set of Amazon EC2 instances. Experiments show that RapidRAID codes reduce a single objects coding time by up to 90%, while when multiple objects are encoded concurrently, the reduction is up to 20%.
Storage and memory systems for modern data analytics are heavily layered, managing shared persistent data, cached data, and non-shared execution data in separate systems such as distributed file system like HDFS, in-memory file system like Alluxio and computation framework like Spark. Such layering introduces significant performance and management costs for copying data across layers redundantly and deciding proper resource allocation for all layers. In this paper we propose a single system called Pangea that can manage all data---both intermediate and long-lived data, and their buffer/caching, data placement optimization, and failure recovery---all in one monolithic storage system, without any layering. We present a detailed performance evaluation of Pangea and show that its performance compares favorably with several widely used layered systems such as Spark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا